Auto-weight-logger2 / src /streamlit_app.py
Sanjayraju30's picture
Update src/streamlit_app.py
f970466 verified
raw
history blame
2.63 kB
import streamlit as st
from PIL import Image
from ocr_engine import extract_weight_from_image
import urllib.parse
import uuid
import io
st.set_page_config(page_title="βš–οΈ Auto Weight Logger", layout="centered")
st.title("βš–οΈ Auto Weight Logger")
# Session state for camera reload
if "camera_key" not in st.session_state:
st.session_state.camera_key = str(uuid.uuid4())
# Input method selector
input_method = st.radio("πŸ“Έ Select Input Method", ["Camera", "Upload"], horizontal=True)
# Clear button
if st.button("πŸ” Clear / Retake"):
st.session_state.camera_key = str(uuid.uuid4())
st.experimental_rerun()
image_bytes = None
image = None
# ----- CAMERA INPUT -----
if input_method == "Camera":
camera_image = st.camera_input("πŸ“· Capture the weight display", key=st.session_state.camera_key)
if camera_image is not None:
image_bytes = camera_image.getvalue()
# ----- FILE UPLOAD INPUT -----
elif input_method == "Upload":
uploaded_file = st.file_uploader("πŸ“ Upload an image (JPG/PNG)", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image_bytes = uploaded_file.read()
# ----- IMAGE PROCESSING -----
if image_bytes:
try:
image = Image.open(io.BytesIO(image_bytes))
st.image(image, caption="πŸ“Έ Snapshot", use_column_width=True)
if len(image_bytes) > 5 * 1024 * 1024:
st.error("❌ Image too large (>5MB). Please use a smaller one.")
st.stop()
with st.spinner("πŸ” Extracting weight..."):
weight, confidence = extract_weight_from_image(image)
st.write(f"πŸ› οΈ DEBUG: weight = {weight}, confidence = {confidence}")
if not weight or confidence < 80:
st.error(f"⚠️ OCR confidence too low ({int(confidence)}%). Please try again.")
else:
st.success(f"βœ… Detected Weight: {weight} g (Confidence: {int(confidence)}%)")
# Salesforce redirect link
device_id = "BAL-001"
image_url = "" # Optional
salesforce_url = (
"https://autoweightlogger-dev-ed.my.salesforce-sites.com/"
f"weight_logger_page?WeightInput={urllib.parse.quote(str(weight))}"
f"&DeviceID={urllib.parse.quote(device_id)}&ImageURL={urllib.parse.quote(image_url)}"
)
st.markdown("### πŸ“€ Send to Salesforce")
st.markdown(f"[βœ… Click here to confirm and log in Salesforce]({salesforce_url})", unsafe_allow_html=True)
except Exception as e:
st.error("❌ Failed to load or process the image.")
st.exception(e)