Auto-weight-logger2 / src /streamlit_app.py
Sanjayraju30's picture
Update src/streamlit_app.py
21a3f78 verified
raw
history blame
2.74 kB
import streamlit as st
from PIL import Image
import io
import uuid
import urllib.parse
from ocr_engine import extract_weight_from_image # Your OCR logic
st.set_page_config(page_title="βš–οΈ Auto Weight Logger", layout="centered")
st.title("βš–οΈ Auto Weight Logger")
# Unique key for camera input refresh
if "camera_key" not in st.session_state:
st.session_state.camera_key = str(uuid.uuid4())
# UI - Input type selector
input_method = st.radio("πŸ“Έ Choose Input Method", ["Camera", "Upload"], horizontal=True)
# UI - Clear/reset
if st.button("πŸ” Clear / Retake"):
st.session_state.camera_key = str(uuid.uuid4())
st.experimental_rerun()
# Initialize variables
image_bytes = None
image = None
# ----------------- CAMERA -----------------
if input_method == "Camera":
cam_image = st.camera_input("πŸ“· Capture the weight display", key=st.session_state.camera_key)
if cam_image is not None:
image_bytes = cam_image.getvalue()
# ----------------- UPLOAD -----------------
elif input_method == "Upload":
uploaded_image = st.file_uploader("πŸ“ Upload image (JPG, PNG)", type=["jpg", "jpeg", "png"])
if uploaded_image is not None:
image_bytes = uploaded_image.read()
# ----------------- PROCESS IMAGE -----------------
if image_bytes:
try:
image = Image.open(io.BytesIO(image_bytes))
st.image(image, caption="πŸ“Έ Snapshot", use_column_width=True)
if len(image_bytes) > 5 * 1024 * 1024:
st.error("❌ Image too large (>5MB). Try a smaller file.")
st.stop()
# OCR
with st.spinner("πŸ” Extracting weight..."):
weight, confidence = extract_weight_from_image(image)
st.write(f"πŸ› οΈ DEBUG: weight = {weight}, confidence = {confidence}")
if not weight or confidence < 80:
st.error(f"⚠️ OCR confidence too low ({int(confidence)}%). Please try again.")
else:
st.success(f"βœ… Detected Weight: {weight} g (Confidence: {int(confidence)}%)")
# Salesforce link
device_id = "BAL-001"
image_url = "" # Optional if you host it
salesforce_url = (
"https://autoweightlogger-dev-ed.my.salesforce-sites.com/"
f"weight_logger_page?WeightInput={urllib.parse.quote(str(weight))}"
f"&DeviceID={urllib.parse.quote(device_id)}&ImageURL={urllib.parse.quote(image_url)}"
)
st.markdown("### πŸ“€ Send to Salesforce")
st.markdown(f"[βœ… Click here to confirm and log in Salesforce]({salesforce_url})", unsafe_allow_html=True)
except Exception as e:
st.error("❌ Failed to read/process the image.")
st.exception(e)