Auto-weight-logger1 / src /streamlit_app.py
Sanjayraju30's picture
Update src/streamlit_app.py
844e1ad verified
raw
history blame
1.92 kB
import streamlit as st
from PIL import Image
from ocr_engine import extract_weight_from_image
import urllib.parse
st.set_page_config(page_title="Auto Weight Logger", layout="centered")
st.title("βš–οΈ Auto Weight Logger")
img_data = st.camera_input("πŸ“· Capture the weight display")
if img_data:
# βœ… BRD: Check file size limit
if len(img_data.getvalue()) > 5 * 1024 * 1024:
st.error("❌ Image too large (>5MB). Please try again.")
st.stop()
# βœ… Preview the image
image = Image.open(img_data)
st.image(image, caption="πŸ“Έ Snapshot", use_column_width=True)
# βœ… Extract weight and confidence
with st.spinner("πŸ” Extracting weight..."):
weight, confidence = extract_weight_from_image(image)
# βœ… BRD: Confidence threshold check
if not weight or confidence < 80:
st.error(f"⚠️ OCR confidence too low ({int(confidence)}%). Please retake the image.")
if st.button("πŸ” Try Again"):
st.experimental_rerun()
st.stop()
# βœ… Show extracted weight
st.success(f"βœ… Detected Weight: {weight} g (Confidence: {int(confidence)}%)")
# βœ… Set device ID and image URL
device_id = "BAL-001"
image_url = "" # optional, leave blank unless you host the image
# βœ… Encode URL parameters
encoded_weight = urllib.parse.quote(str(weight))
encoded_device = urllib.parse.quote(device_id)
encoded_image_url = urllib.parse.quote(image_url)
# βœ… Salesforce link
salesforce_url = (
f"https://autoweightlogger-dev-ed.my.salesforce-sites.com/"
f"weight_logger_page?WeightInput={encoded_weight}&DeviceID={encoded_device}&ImageURL={encoded_image_url}"
)
# βœ… Show link to confirm weight in Salesforce
st.markdown("### πŸ“€ Send to Salesforce")
st.markdown(f"[βœ… Click here to confirm and log in Salesforce]({salesforce_url})", unsafe_allow_html=True)