|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
model_id = "Sandiago21/whisper-large-v2-italian" |
|
pipe = pipeline("automatic-speech-recognition", model=model_id) |
|
|
|
|
|
title = "Automatic Speech Recognition (ASR)" |
|
description = """ |
|
Demo for automatic speech recognition in Italian. Demo uses [Sandiago21/whisper-large-v2-italian](https://huggingface.co/Sandiago21/whisper-large-v2-italian) checkpoint, which is based on OpenAI's |
|
[Whisper](https://huggingface.co/openai/whisper-large-v2) model and is fine-tuned in Italian Audio dataset |
|
![Automatic Speech Recognition (ASR)"](https://datasets-server.huggingface.co/assets/huggingface-course/audio-course-images/--/huggingface-course--audio-course-images/train/2/image/image.png "Diagram of Automatic Speech Recognition (ASR)") |
|
""" |
|
|
|
def transcribe_speech(filepath): |
|
output = pipe( |
|
filepath, |
|
max_new_tokens=256, |
|
generate_kwargs={ |
|
"task": "transcribe", |
|
"language": "italian", |
|
}, |
|
chunk_length_s=30, |
|
batch_size=8, |
|
) |
|
return output["text"] |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_transcribe = gr.Interface( |
|
fn=transcribe_speech, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs=gr.outputs.Textbox(), |
|
tilte=title, |
|
description=description, |
|
) |
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe_speech, |
|
inputs=gr.Audio(source="upload", type="filepath"), |
|
outputs=gr.outputs.Textbox(), |
|
examples=[["./example.wav"]], |
|
tilte=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface( |
|
[mic_transcribe, file_transcribe], |
|
["Transcribe Microphone", "Transcribe Audio File"], |
|
), |
|
|
|
demo.launch() |
|
|