sum_it / app.py
SamuelMiller's picture
Update app.py
104b149
raw
history blame
914 Bytes
import torch
from transformers import pipeline
import gradio as gr
import streamlit as st
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
from gradio.mix import Parallel, Series
desc = "Summarize your text! (audio transcription available soon)"
pipe = pipeline('sentiment-analysis')
text = st.text_area('enter some text!')
if text:
out = pipe(text)
st.json(out)
qa_model = 'huggingface/SamuelMiller/qa_squad'
my_model = 'huggingface/SamuelMiller/lil_sumsum'
better_model = 'huggingface/google/pegasus-large'
#def summarize(text):
#summ = gr.Interface.load(qa_model)
#summary = summ(text)
#return summary
#iface = gr.Interface(fn=summarize,
#theme='huggingface',
#title= 'sum_it',
#description= desc,
#inputs= "text",
#outputs= 'textbox')
#iface.launch(inline = False)