SamuelM0422 commited on
Commit
bb85f4d
Β·
1 Parent(s): 9a7ba9a

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:985757f8ec9414733d72427e409a9b45c9ab44f6bdea8d2f2c44ed7256cd8d53
3
+ size 31314554
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+ from model import create_effnetb2_model
6
+ from timeit import default_timer as timer
7
+ from typing import Tuple, Dict
8
+
9
+ # Setup class names
10
+ class_names = ['pizza', 'steak', 'sushi']
11
+
12
+ ### 2. Model and transforms preparation ###
13
+ effnetb2, effnetb2_transforms = create_effnetb2_model()
14
+
15
+ # Load saved weights
16
+ effnetb2.load_state_dict(torch.load(
17
+ f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth',
18
+ map_location=torch.device('cpu'))
19
+ )
20
+
21
+ ### 3. Predict Function ###
22
+ def predict(img) -> Tuple[Dict, float]:
23
+ """Transforms and performs a prediction on img and returns prediction and time taken.
24
+ """
25
+ # Start the timer
26
+ start_time = timer()
27
+
28
+ # Transform the target image and add a batch dimension
29
+ img = effnetb2_transforms(img).unsqueeze(0)
30
+
31
+ # Put model into evaluation mode and turn on inference mode
32
+ effnetb2.eval()
33
+ with torch.inference_mode():
34
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
35
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
36
+
37
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
38
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
39
+
40
+ # Calculate the prediction time
41
+ pred_time = round(timer() - start_time, 5)
42
+
43
+ # Return the prediction dictionary and prediction time
44
+ return pred_labels_and_probs, pred_time
45
+
46
+ ### 4. Gradio app ###
47
+
48
+ # Create title, description and article strings
49
+ title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
50
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
51
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
52
+
53
+ # Create examples list from "examples/" directory
54
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
55
+
56
+ # Create the Gradio demo
57
+ demo = gr.Interface(fn=predict, # mapping function from input to output
58
+ inputs=gr.Image(type="pil"), # what are the inputs?
59
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
60
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
61
+ # Create examples list from "examples/" directory
62
+ examples=example_list,
63
+ title=title,
64
+ description=description,
65
+ article=article)
66
+
67
+ # Launch the demo!
68
+ demo.launch()
examples/2582289.jpg ADDED
examples/3622237.jpg ADDED
examples/592799.jpg ADDED
model.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 image transforms.
19
+ """
20
+ # Create EffNetB2 pretrained weights, transforms and model
21
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
22
+ transforms = weights.transforms()
23
+ model = torchvision.models.efficientnet_b2(weights=weights)
24
+
25
+ # Freeze all layers in base model
26
+ for param in model.parameters():
27
+ param.requires_grad = False
28
+
29
+ # Change classifier head with random seed for reproducibility
30
+ torch.manual_seed(seed)
31
+ model.classifier = nn.Sequential(
32
+ nn.Dropout(p=0.3, inplace=True),
33
+ nn.Linear(in_features=1408, out_features=num_classes),
34
+ )
35
+
36
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+
2
+ torch==2.5.1
3
+ torchvision==0.20.1
4
+ gradio==5.14.0