Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def predict(input_text):
|
11 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
12 |
+
outputs = model.generate(**inputs)
|
13 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
return response
|
15 |
+
|
16 |
+
# Create the Gradio interface
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=predict,
|
19 |
+
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
|
20 |
+
outputs=gr.outputs.Textbox(label="Generated Text"),
|
21 |
+
title="DeepSeek-R1-Distill-Qwen-1.5B Text Generation",
|
22 |
+
description="Enter text and the model will generate a continuation.",
|
23 |
+
)
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
iface.launch()
|