Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Define the prediction function | |
def predict(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[gr.Textbox(lines=5, label="Input Text")], | |
outputs=[gr.Textbox(label="Generated Text")], | |
title="DeepSeek-R1-Distill-Qwen-1.5B Text Generation", | |
description="Enter text and the model will generate a continuation.", | |
) | |
if __name__ == "__main__": | |
iface.launch() | |