File size: 6,935 Bytes
40fabff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import google.generativeai as genai
import requests
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from bs4 import BeautifulSoup
import gradio as gr
# Configure Gemini API key
gemini_api_secret_name = 'AIzaSyA0yLvySmj8xjMd0sedSgklg1fj0wBDyyw'
from google.colab import userdata
try:
GOOGLE_API_KEY = userdata.get(gemini_api_secret_name)
genai.configure(api_key=GOOGLE_API_KEY)
except userdata.SecretNotFoundError as e:
print(f'Secret not found\n\nThis expects you to create a secret named {gemini_api_secret_name} in Colab\n\nVisit https://makersuite.google.com/app/apikey to create an API key\n\nStore that in the secrets section on the left side of the notebook (key icon)\n\nName the secret {gemini_api_secret_name}')
raise e
except userdata.NotebookAccessError as e:
print(f'You need to grant this notebook access to the {gemini_api_secret_name} secret in order for the notebook to access Gemini on your behalf.')
raise e
except Exception as e:
# unknown error
print(f"There was an unknown error. Ensure you have a secret {gemini_api_secret_name} stored in Colab and it's a valid key from https://makersuite.google.com/app/apikey")
raise e
# Fetch lecture notes and model architectures
def fetch_lecture_notes():
lecture_urls = [
"https://stanford-cs324.github.io/winter2022/lectures/introduction/",
"https://stanford-cs324.github.io/winter2022/lectures/capabilities/",
"https://stanford-cs324.github.io/winter2022/lectures/data/",
"https://stanford-cs324.github.io/winter2022/lectures/modeling/"
]
lecture_texts = []
for url in lecture_urls:
response = requests.get(url)
if response.status_code == 200:
print(f"Fetched content from {url}")
lecture_texts.append((extract_text_from_html(response.text), url))
else:
print(f"Failed to fetch content from {url}, status code: {response.status_code}")
return lecture_texts
def fetch_model_architectures():
url = "https://github.com/Hannibal046/Awesome-LLM#milestone-papers"
response = requests.get(url)
if response.status_code == 200:
print(f"Fetched model architectures, status code: {response.status_code}")
return extract_text_from_html(response.text), url
else:
print(f"Failed to fetch model architectures, status code: {response.status_code}")
return "", url
# Extract text from HTML content
def extract_text_from_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text(separator="\n", strip=True)
return text
# Generate embeddings using SentenceTransformers
def create_embeddings(texts, model):
texts_only = [text for text, _ in texts]
embeddings = model.encode(texts_only)
return embeddings
# Initialize FAISS index
def initialize_faiss_index(embeddings):
dimension = embeddings.shape[1] # Assuming all embeddings have the same dimension
index = faiss.IndexFlatL2(dimension)
index.add(embeddings.astype('float32'))
return index
# Handle natural language queries
conversation_history = []
def handle_query(query, faiss_index, embeddings_texts, model):
global conversation_history
query_embedding = model.encode([query]).astype('float32')
# Search FAISS index
_, indices = faiss_index.search(query_embedding, 3) # Retrieve top 3 results
relevant_texts = [embeddings_texts[idx] for idx in indices[0]]
# Combine relevant texts and truncate if necessary
combined_text = "\n".join([text for text, _ in relevant_texts])
max_length = 500 # Adjust as necessary
if len(combined_text) > max_length:
combined_text = combined_text[:max_length] + "..."
# Generate a response using Gemini
try:
response = genai.generate_text(
model="models/text-bison-001",
prompt=f"Based on the following context:\n\n{combined_text}\n\nAnswer the following question: {query}",
max_output_tokens=200
)
generated_text = response.result
except Exception as e:
print(f"Error generating text: {e}")
generated_text = "An error occurred while generating the response."
# Update conversation history
conversation_history.append(f"User: {query}")
conversation_history.append(f"System: {generated_text}")
# Extract sources
sources = [url for _, url in relevant_texts]
return generated_text, sources
def generate_concise_response(prompt, context):
try:
response = genai.generate_text(
model="models/text-bison-001",
prompt=f"{prompt}\n\nContext: {context}\n\nAnswer:",
max_output_tokens=200
)
return response.result
except Exception as e:
print(f"Error generating concise response: {e}")
return "An error occurred while generating the concise response."
# Main function to execute the pipeline
def chatbot(message , history):
lecture_notes = fetch_lecture_notes()
model_architectures = fetch_model_architectures()
all_texts = lecture_notes + [model_architectures]
# Load the SentenceTransformers model
embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
embeddings = create_embeddings(all_texts, embedding_model)
# Initialize FAISS index
faiss_index = initialize_faiss_index(np.array(embeddings))
response, sources = handle_query(message, faiss_index, all_texts, embedding_model)
print("Query:", message)
print("Response:", response)
total_text = response
if sources:
print("Sources:", sources)
relevant_source = ""
for source in sources:
relevant_source += source +"\n"
total_text += "\n\nSources:\n" + relevant_source
else:
print("Sources: None of the provided sources were used.")
print("----")
# Generate a concise and relevant summary using Gemini
prompt = "Summarize the user queries so far"
user_queries_summary = " ".join(message)
concise_response = generate_concise_response(prompt, user_queries_summary)
print("Concise Response:")
print(concise_response)
return total_text
iface = gr.ChatInterface(
chatbot,
title="LLM Research Assistant",
description="Ask questions about LLM architectures, datasets, and training techniques.",
examples=[
"What are some milestone model architectures in LLMs?",
"Explain the transformer architecture.",
"Tell me about datasets used to train LLMs.",
"How are LLM training datasets cleaned and preprocessed?",
"Summarize the user queries so far"
],
retry_btn="Regenerate",
undo_btn="Undo",
clear_btn="Clear",
)
if __name__ == "__main__":
iface.launch(debug=True) |