Spaces:
Sleeping
Sleeping
Commit
·
3b8e35c
1
Parent(s):
f9e518b
Adding sources
Browse files
app.py
CHANGED
@@ -64,6 +64,7 @@ def document_loader(file_path,api_key,doc_type='pdf',llm='Huggingface',temperatu
|
|
64 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
|
65 |
|
66 |
texts = process_documents(documents=document)
|
|
|
67 |
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
68 |
global qa
|
69 |
qa = RetrievalQA.from_chain_type(llm=chat_application(llm_service=llm,key=api_key,
|
@@ -114,6 +115,10 @@ def infer(question, history):
|
|
114 |
# chat_history = res
|
115 |
print("Question in infer :",question)
|
116 |
result = qa({"query": question})
|
|
|
|
|
|
|
|
|
117 |
return result["result"]
|
118 |
|
119 |
def bot(history):
|
@@ -127,7 +132,6 @@ def bot(history):
|
|
127 |
yield history
|
128 |
|
129 |
def add_text(history, text):
|
130 |
-
|
131 |
history = history + [(text, None)]
|
132 |
return history, ""
|
133 |
|
@@ -152,8 +156,8 @@ with gr.Blocks(css=css) as demo:
|
|
152 |
|
153 |
with gr.Group():
|
154 |
chatbot = gr.Chatbot(height=300)
|
155 |
-
|
156 |
-
|
157 |
with gr.Row():
|
158 |
question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
|
159 |
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
|
@@ -195,8 +199,9 @@ with gr.Blocks(css=css) as demo:
|
|
195 |
load_pdf.click(loading_file, None, langchain_status, queue=False)
|
196 |
load_pdf.click(document_loader, inputs=[pdf_doc,API_key,file_extension,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
|
197 |
|
198 |
-
question.submit(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot)
|
199 |
-
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot)
|
|
|
200 |
clean_chat_btn.click(clear_chat, [], chatbot)
|
201 |
|
202 |
|
|
|
64 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
|
65 |
|
66 |
texts = process_documents(documents=document)
|
67 |
+
global vector_db
|
68 |
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
69 |
global qa
|
70 |
qa = RetrievalQA.from_chain_type(llm=chat_application(llm_service=llm,key=api_key,
|
|
|
115 |
# chat_history = res
|
116 |
print("Question in infer :",question)
|
117 |
result = qa({"query": question})
|
118 |
+
matching_docs_score = vector_db.similarity_search_with_score(question)
|
119 |
+
|
120 |
+
print(" Matching_doc ",matching_docs_score)
|
121 |
+
|
122 |
return result["result"]
|
123 |
|
124 |
def bot(history):
|
|
|
132 |
yield history
|
133 |
|
134 |
def add_text(history, text):
|
|
|
135 |
history = history + [(text, None)]
|
136 |
return history, ""
|
137 |
|
|
|
156 |
|
157 |
with gr.Group():
|
158 |
chatbot = gr.Chatbot(height=300)
|
159 |
+
with gr.Row():
|
160 |
+
sources = gr.HTML(value = "Source paragraphs where I looked for answers will appear here", height=300)
|
161 |
with gr.Row():
|
162 |
question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
|
163 |
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
|
|
|
199 |
load_pdf.click(loading_file, None, langchain_status, queue=False)
|
200 |
load_pdf.click(document_loader, inputs=[pdf_doc,API_key,file_extension,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
|
201 |
|
202 |
+
question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
203 |
+
submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
204 |
+
# submit_btn.then(chatf.highlight_found_text, [chatbot, sources], [sources])
|
205 |
clean_chat_btn.click(clear_chat, [], chatbot)
|
206 |
|
207 |
|