Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch as th | |
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.vectorstores import Chroma, FAISS | |
from langchain import HuggingFaceHub | |
DEVICE = 'cpu ' | |
FILE_EXT = ['pdf','text','csv','word','wav'] | |
def loading_pdf(): | |
return "Loading..." | |
def process_documents(documents,data_chunk=1000,chunk_overlap=50): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap) | |
texts = text_splitter.split_documents(documents[0]) | |
return texts | |
def get_hugging_face_model(model_id,API_key,temperature=0.1): | |
chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key, | |
repo_id=model_id, | |
model_kwargs={"temperature": temperature, "max_new_tokens": 2048}) | |
return chat_llm | |
def document_loading(file_data,doc_type='pdf',key=None): | |
embedding_model = SentenceTransformerEmbeddings(model_name='all-mpnet-base-v2',model_kwargs={"device": DEVICE}) | |
document = None | |
if doc_type == 'pdf': | |
document = process_pdf_document(document_file_name=file_data) | |
elif doc_type == 'text': | |
document = process_text_document(document_file_name=file_data) | |
elif doc_type == 'csv': | |
document = process_csv_document(document_file_name=file_data) | |
elif doc_type == 'word': | |
document = process_word_document(document_file_name=file_data) | |
texts = process_documents(documents=document) | |
vectordb = FAISS.from_documents(documents=texts, embedding= embedding_model) | |
def process_text_document(document_file_name): | |
loader = TextLoader(document_file_name) | |
document = loader.load() | |
return document | |
def process_csv_document(document_file_name): | |
loader = CSVLoader(file_path=document_file_name) | |
document = loader.load() | |
return document | |
def process_word_document(document_file_name): | |
loader = UnstructuredWordDocumentLoader(file_path=document_file_name) | |
document = loader.load() | |
return document | |
def process_pdf_document(document_file_name): | |
loader = PDFMinerLoader(document_file_name) | |
document = loader.load()[0] | |
return document | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with Data • OpenAI/HuggingFace</h1> | |
<p style="text-align: center;">Upload a file from your computer, click the "Load data to LangChain" button, <br /> | |
when everything is ready, you can start asking questions about the data you uploaded ;) <br /> | |
This version is just for QA retrival so it will not use chat history, and uses Hugging face as LLM, | |
so you don't need any key</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
with gr.Box(): | |
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='LLM',info='select the LLM to be used') | |
API_key = gr.Textbox(label="You OpenAI/Huggingface API key", type="password") | |
with gr.Column(): | |
file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select your files extensions!") | |
pdf_doc = gr.File(label="Load a File", file_types=FILE_EXT, type="file") | |
with gr.Row(): | |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
load_pdf = gr.Button("Load file to langchain") | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |