Spaces:
Running
Running
Commit
·
3caebd7
1
Parent(s):
d1bffba
adding app with CLIP image segmentation
Browse files
app.py
CHANGED
@@ -29,6 +29,7 @@ def rescale_bbox(bbox,orig_image_shape=(1024,1024),model_shape=352):
|
|
29 |
return [int(y1),int(x1),int(y2),int(x2)]
|
30 |
|
31 |
def detect_using_clip(image,prompts=[],threshould=0.4):
|
|
|
32 |
model_detections = dict()
|
33 |
predicted_images = dict()
|
34 |
inputs = processor(
|
@@ -49,8 +50,12 @@ def detect_using_clip(image,prompts=[],threshould=0.4):
|
|
49 |
lbl_0 = label(predicted_image)
|
50 |
props = regionprops(lbl_0)
|
51 |
prompt = prompt.lower()
|
|
|
52 |
model_detections[prompt] = [rescale_bbox(prop.bbox,orig_image_shape=image.shape[:2],model_shape=predicted_image.shape[0]) for prop in props]
|
53 |
-
|
|
|
|
|
|
|
54 |
return model_detections , predicted_images
|
55 |
|
56 |
def visualize_images(image,detections,predicted_image,prompt):
|
|
|
29 |
return [int(y1),int(x1),int(y2),int(x2)]
|
30 |
|
31 |
def detect_using_clip(image,prompts=[],threshould=0.4):
|
32 |
+
h,w = image.shape[:2]
|
33 |
model_detections = dict()
|
34 |
predicted_images = dict()
|
35 |
inputs = processor(
|
|
|
50 |
lbl_0 = label(predicted_image)
|
51 |
props = regionprops(lbl_0)
|
52 |
prompt = prompt.lower()
|
53 |
+
|
54 |
model_detections[prompt] = [rescale_bbox(prop.bbox,orig_image_shape=image.shape[:2],model_shape=predicted_image.shape[0]) for prop in props]
|
55 |
+
a = np.expand_dims(predicted_image,axis=-1)
|
56 |
+
print(a.shape,image.shape[:2])
|
57 |
+
predicted_images[prompt]= cv2.resize(np.expand_dims(predicted_image,axis=-1),(h,w),interpolation = cv2.INTER_LINEAR)
|
58 |
+
|
59 |
return model_detections , predicted_images
|
60 |
|
61 |
def visualize_images(image,detections,predicted_image,prompt):
|