Spaces:
Running
Running
File size: 3,545 Bytes
d1bffba d1d4db7 d1bffba c2e6eeb d1bffba c2e6eeb d1bffba c2e6eeb d1d4db7 c2e6eeb d367c2f d1bffba 2677815 c2e6eeb d1d4db7 c2e6eeb d367c2f d1bffba d367c2f 1f10ad6 d1d4db7 d1bffba d1d4db7 c2e6eeb d1d4db7 c2e6eeb d1bffba d367c2f d1bffba ff9f53e d1bffba 582506c d1bffba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
import torch
import cv2
from matplotlib import pyplot as plt
from segmentation_mask_overlay import overlay_masks
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
classes = list()
def create_rgb_mask(mask):
color = tuple(np.random.choice(range(0,256), size=3))
gray_3_channel = cv2.merge((mask, mask, mask))
gray_3_channel[mask==255] = color
return gray_3_channel.astype(np.uint8)
def detect_using_clip(image,prompts=[],threshould=0.4):
predicted_masks = list()
inputs = processor(
text=prompts,
images=[image] * len(prompts),
padding="max_length",
return_tensors="pt",
)
with torch.no_grad(): # Use 'torch.no_grad()' to disable gradient computation
outputs = model(**inputs)
preds = outputs.logits.unsqueeze(1)
for i,prompt in enumerate(prompts):
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
predicted_image = np.where(predicted_image>threshould,255,0)
predicted_masks.append(predicted_image)
bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
return bool_masks
def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
alpha = 0.7
image_resize = cv2.resize(image,(352,352))
resize_image_copy = image_resize.copy()
# for mask_image in predicted_images:
# resize_image_copy = cv2.addWeighted(resize_image_copy,alpha,mask_image,1-alpha,10)
return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)
def shot(brightness,contrast,image,labels_text):
if "," in labels_text:
prompts = labels_text.split(',')
else:
prompts = [labels_text]
prompts = list(map(lambda x: x.strip(),prompts))
mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(prompts)]
cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]
resize_image = cv2.resize(image,(352,352))
predicted_images = detect_using_clip(image,prompts=prompts)
category_image = overlay_masks(resize_image,np.stack(predicted_images,-1),labels=mask_labels,colors=cmap,alpha=0.4,beta=1)
return category_image
iface = gr.Interface(fn=shot,
inputs = [
gr.Slider(5, 50, value=15, label="Brightness", info="Choose between 5 and 50"),
gr.Slider(1, 5, value=1.5, label="Contrast", info="Choose between 1 and 5"),
"image",
"text"
],
outputs = "image",
description ="Add an Image and lists of category to be detected separated by commas(atleast 2 )",
title = "Zero-shot Image Segmentation with Prompt ",
examples=[
[19,1.5,"images/seats.jpg","door,table,chairs"],
[20,1.8,"images/vegetables.jpg","carrot,white radish,brinjal,basket,potato"],
[17,2,"images/room2.jpg","door, plants, dog, coffe table, table lamp, carpet, door"]
],
# allow_flagging=False,
# analytics_enabled=False,
)
iface.launch()
|