cryptoTester / crypto_viewer.py
SamHastings1088's picture
first commit
642c876
raw
history blame
10.7 kB
import streamlit as st
import requests
import json
import plotly.express as px
import pandas as pd
import datetime as dt
from risk_metrics import annual_return, absolute_return, annual_vol, max_drawdown
try:
from PIL import Image
except ImportError:
import Image
import numpy as np
st.markdown(
"""
<style>
.css-1inwz65 {
font-size: 0px;
}
</style>
""",
unsafe_allow_html = True
)
def load_data(limit='10'):
'''
Returns a dictionary with data for each of the top 'limit' cypto currencies
ranked by market cap. The data is generated by querying the coincap API
/assets endpoint. See coincap documentation for more info:
https://docs.coincap.io/
Parameters:
limit (str): The number of crypto coins that you want to return data for.
Ranked in order of market cap.
Returns:
(dict): A dictionary object of data.
'''
url = "https://api.coincap.io/v2/assets"
# N.B. here adampt the params dict to only request what you need
payload={'limit': limit}
headers = {}
return requests.request("GET", url, params=payload, headers=headers).json()
def load_histories(ids_list):
url = "http://api.coincap.io/v2/assets/{}/history?interval=d1"
payload={}
headers = {}
histories_dict = {}
for id in ids_list:
response_histories = requests.request("GET", url.format(id), headers=headers, data=payload)
histories_json = response_histories.json()
histories_dict[id] = histories_json['data']
return histories_dict
def gen_symbols(assets_json):
symbols_list = []
names_list = []
ids_list =[]
for dict in assets_json['data']:
symbols_list.append(dict['symbol'])
names_list.append(dict['name'])
ids_list.append(dict['id'])
return symbols_list, names_list, ids_list
def write_symbols(symbols_list):
cols = st.columns(len(symbols_list))
for i, symbol in enumerate(symbols_list):
col = cols[i]
col.image(f'logos/{symbol}.png',width=40)
globals()[st.session_state.names[i]] = col.checkbox(symbol, value = 0)
#col.checkbox(symbol, st.image(f'logos/{symbol}.png',width=40))
if "assets_json" not in st.session_state:
st.session_state.assets_json = load_data()
symbols, names, ids = gen_symbols(st.session_state.assets_json)
st.session_state.symbols = symbols
st.session_state.names = names
st.session_state.ids = ids
st.session_state.histories = load_histories(ids)
id_symbol_map = {}
for i, id in enumerate(ids):
id_symbol_map[id]=symbols[i]
st.session_state.id_symbol_map = id_symbol_map
#write_symbols(st.session_state.symbols)
symbols_list = st.session_state.symbols
names_list = st.session_state.names
ids_list = st.session_state.ids
asset_json = st.session_state.assets_json
histories_dict = st.session_state.histories
id_symbol_map = st.session_state.id_symbol_map
def date_conv(date):
return dt.datetime.strptime(date, '%Y-%m-%d')
price_histories_df = pd.DataFrame(columns=['coin','date','price'])
return_histories_df = pd.DataFrame(columns=['coin','date','price'])
for id in ids_list:
price=[]
date=[]
for observation in histories_dict[id]:
date.append(date_conv(observation['date'][0:10]))
#date.append(observation['time'])
price.append(float(observation['priceUsd']))
price_df = pd.DataFrame({"coin": id, "date":date, "price": price})
price_histories_df = pd.concat([price_histories_df, price_df])
returns = [float(b) / float(a) for b,a in zip(price[1:], price[:-1])]
returns_df = pd.DataFrame({"coin": id, "date":date[1:], "price": returns})
return_histories_df = pd.concat([return_histories_df, returns_df])
start_date = dt.date.today()-dt.timedelta(360)
rebased_prices_df = pd.DataFrame(columns=['coin','date','price','rebased_price'])
for id in ids_list:
temp_rebase_df = return_histories_df[(return_histories_df['date']>=pd.Timestamp(start_date))
& (return_histories_df['coin']==id)]
rebased_price=[1]
for i in range(1,len(temp_rebase_df)):
rebased_price.append(temp_rebase_df['price'].iloc[i]*rebased_price[i-1])
temp_rebase_df['rebased_price']=rebased_price
rebased_prices_df = pd.concat([rebased_prices_df, temp_rebase_df])
fig2 = px.line(rebased_prices_df, x="date", y="rebased_price", color="coin")
st.write(fig2)
cols = st.columns(len(symbols_list))
checkboxes=[]
def write_coins(id_symbol_map, n_cols=5):
n_coins = len(id_symbol_map)
n_rows = 1 + n_coins // int(n_cols)
rows = [st.container() for _ in range(n_rows)]
cols_per_row = [r.columns(n_cols) for r in rows]
cols = [column for row in cols_per_row for column in row]
#cols = st.columns(n_coins)
#checkboxes=[]
for i, id in enumerate(id_symbol_map):
cols[i].image('logos/{}.png'.format(id_symbol_map[id]),width=40)
globals()[st.session_state.names[i]] = cols[i].checkbox("include", value = 1, key=id)
globals()["slider_"+ids_list[i]] = cols[i].slider(id, min_value=0, max_value=100, value=50, key=id)
checkboxes.append(globals()[st.session_state.names[i]])
write_coins(id_symbol_map)
#for i, symbol in enumerate(symbols_list):
# col = cols[i]
# col.image(f'logos/{symbol}.png',width=40)
# globals()[st.session_state.names[i]] = col.checkbox(symbol, value = 1)
# checkboxes.append(globals()[st.session_state.names[i]])
#if any(checkboxes):
# checked_ids=[]
# cols2 = st.columns(sum(checkboxes))
# j=0
# for i, value in enumerate(checkboxes):
# if value==1:
# checked_ids.append(ids_list[i])
# col2=cols2[j]
# col2.image(f'logos/{symbols_list[i]}.png',width=20)
# j+=1
def create_grid(top_left, bottom_right):
num_rows=3
num_cols=7
col_positions = np.linspace(top_left[0], bottom_right[0], num=num_cols)
row_positions = np.linspace(top_left[1], bottom_right[1], num=num_rows)
return [(int(col_positions[i]),int(row_positions[j])) for j in range(num_rows) for i in range(num_cols)]
# These are the coordinates of the top left and bottom right of the cart image
# given it's curent size. You need to change these if you change the size of the
# cart
top_left=[300,300]
bottom_right=[650, 450]
grid = create_grid(top_left, bottom_right)
def add_logo(background, symbol, position, size=(70,70)):
bg = Image.open(background)
fg = Image.open("logos/{}.png".format(symbol))
bg = bg.convert("RGBA")
fg = fg.convert("RGBA")
# Resize logo
fg_resized = fg.resize(size)
# Overlay logo onto background at position
bg.paste(fg_resized,box=position,mask=fg_resized)
# Save result
bg.save(background)
cart_cols = st.columns([3,2])
if any(checkboxes):
checked_ids=[]
for i, value in enumerate(checkboxes):
if value==1:
checked_ids.append(ids_list[i])
#cart_cols[1].image(f'logos/{symbols_list[i]}.png',width=20)
#cart_cols[2].slider(ids_list[i],min_value=0, max_value=100, value=50)
# change the below to make it run only if checked_ids ecists - i.e. wrap it up oin a function
original = Image.open("images/cart.png")
original.save('images/background.png')
position_ids = [round(x) for x in np.linspace(0, len(grid)-1, num=len(checked_ids))]
for i, id in enumerate(checked_ids):
size = tuple([int(num * globals()["slider_"+id]/50) for num in (70,70)])
add_logo('images/background.png', id_symbol_map[id], grid[position_ids[i]], size=size)
weights=[]
for id in checked_ids:
weights.append(globals()["slider_"+id])
sum_weights = sum(weights)
weights = [weight/sum_weights for weight in weights]
weights_df = pd.DataFrame({'ids':checked_ids, 'weights': weights, 'portfolio': 'port_1'})
pie_fig = px.pie(weights_df, values='weights', names='ids')
pie_fig.update_layout(showlegend=False)
bar_fig = px.bar(weights_df, x="portfolio", y="weights", color="ids", width=200)
bar_fig.update_layout(showlegend=False)
cart_cols[0].image('images/background.png', width=400)
cart_cols[1].write(bar_fig)
gen_port = st.button('Generate portfolio return')
metrics_dict= {'annual_return' : "Return (annualised)", 'absolute_return': "Return over period",
'annual_vol': 'Annual volatility', 'max_drawdown': 'Max loss'}
def write_metrics(prices, *metrics):
for metric in metrics:
cols = st.columns(2)
if metric.__name__ == 'max_drawdown':
cols[0].write(metrics_dict[metric.__name__] +': ')
cols[1].write('{:.2%}'.format(metric(prices)[0]))
else:
cols[0].write(metrics_dict[metric.__name__] +': ')
cols[1].write('{:.2%}'.format(metric(prices)))
if gen_port:
# adjust weight calculation to read in from globals()["slider_"+ids_list[i]]
#weights = [1/len(checked_ids)]*len(checked_ids)
portfolio_dict={checked_ids[i]:weights[i] for i in range(len(checked_ids))}
start_date = dt.date.today()-dt.timedelta(360)
weighted_prices_df = pd.DataFrame(columns=['coin','date','price','weighted_price'])
for id in checked_ids:
temp_weight_df = return_histories_df[(return_histories_df['date']>=pd.Timestamp(start_date))
& (return_histories_df['coin']==id)]
weighted_price=[portfolio_dict[id]]
for i in range(1,len(temp_weight_df)):
weighted_price.append(temp_weight_df['price'].iloc[i]*weighted_price[i-1])
temp_weight_df['weighted_price']=weighted_price
weighted_prices_df = pd.concat([weighted_prices_df, temp_weight_df])
date_list = [start_date + dt.timedelta(days=x) for x in range(360)]
port_returns=[]
for date in date_list:
port_returns.append(weighted_prices_df['weighted_price'][weighted_prices_df['date']==pd.Timestamp(date)].sum())
port_returns_df = pd.DataFrame({'date':date_list, 'price': port_returns})
prices = port_returns_df['price']
max_dd, start_idx, end_idx = max_drawdown(prices)
start_dt = port_returns_df['date'].iloc[start_idx]
end_dt = port_returns_df['date'].iloc[end_idx]
fig3 = px.line(port_returns_df, x="date", y="price")
fig3.add_vline(x=start_dt, line_width=1, line_color="red")
fig3.add_vline(x=end_dt, line_width=1, line_color="red")
fig3.add_vrect(x0=start_dt, x1=end_dt, line_width=0, fillcolor="red", opacity=0.05, annotation_text="max loss ")
st.write(fig3)
st.title("Risk metrics")
write_metrics(prices, absolute_return, annual_return, annual_vol, max_drawdown)
#for i, symbol in enumerate(symbols_list):
# col2 = cols2[i]
# col.image(f'logos/{symbol}.png',width=40)
#price_subset_df = price_histories_df[price_histories_df['coin'].isin(checked_ids)]
#rebased_subset_df = rebased_prices_df[rebased_prices_df['coin'].isin(checked_ids)]
#fig1 = px.line(price_subset_df, x="date", y="price", color="coin")
#st.write(fig1)
#fig2 = px.line(rebased_subset_df, x="date", y="rebased_price", color="coin")
#st.write(fig2)