Spaces:
Runtime error
Runtime error
File size: 7,526 Bytes
642c876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
#-------------------
# Imports
#-------------------
import streamlit as st
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objs as go
import plotly.io as pio
from bs4 import BeautifulSoup
import requests
from datetime import datetime
# today's date
today = datetime.today().strftime('%d %B %Y')
st.set_page_config(layout="wide")
#-------------------
# Web scraping Yahoo Finance
#-------------------
dic = {}
url = 'https://finance.yahoo.com/cryptocurrencies?offset=0&count=100'
soup = BeautifulSoup(requests.get(url).text)
# store values in separate lists and then in a dictionary
for listing in soup.find_all('div', attrs={'id':'fin-scr-res-table'}):
symbol_list = []
name_list = []
price_list = []
change_list = []
mcap_list = []
for symbol in listing.find_all('td', attrs={'aria-label':'Symbol'}):
symbol_list.append(symbol.text)
dic['Symbol'] = symbol_list
for name in listing.find_all('td', attrs={'aria-label':'Name'}):
name_list.append(name.text)
dic['Name'] = name_list
for price in listing.find_all('td', attrs={'aria-label':'Price (Intraday)'}):
price_list.append(price.text)
dic['Price'] = price_list
for change in listing.find_all('td', attrs={'aria-label':'% Change'}):
change_list.append(change.text)
dic['% Change'] = change_list
for mcap in listing.find_all('td', attrs={'aria-label':'Market Cap'}):
mcap_list.append(mcap.text)
dic['Market Cap'] = mcap_list
# create a dataframe from dictionary
df_scrape = pd.DataFrame(dic)
df_scrape.Symbol = df_scrape.Symbol.str.replace('-USD','')
df_scrape.Name = df_scrape.Name.str.replace(' USD','')
dic1 = dict(zip(df_scrape.Symbol,df_scrape.Name))
#-------------------
# Streamlit Sidebar
#-------------------
fiat = ['USD','EUR','GBP']
tokens = df_scrape.Symbol.values
# filters selectbox
st.sidebar.title("Filters")
select_token = st.sidebar.selectbox('Tokens', tokens)
select_fiat = st.sidebar.selectbox('Fiat', fiat)
# special expander objects
st.sidebar.markdown('***')
with st.sidebar.expander('Help'):
st.markdown('''
- Select token and fiat of your choice.
- Interactive plots can be zoomed or hovered to retrieve more info.
- Plots can be downloaded using Plotly tools.''')
with st.sidebar.expander('Sources'):
st.markdown('''
- Python Libraries: yfinance, BeautifulSoup, Plotly, Pandas, Streamlit
- Prices: https://finance.yahoo.com
- Logos: https://cryptologos.cc/
''')
st.write("Dashboard adapted from https://github.com/rohithteja/the-crypto-dashboard")
#-------------------
# Add crypto logo and name
#-------------------
col1, col2 = st.columns([1,10])
with col1:
try:
st.image(f'logos/{select_token}.png',width=70)
except:
pass
with col2:
st.markdown(f'''## {dic1[select_token]}''')
#-------------------
# Candlestick chart with moving averages
#-------------------
st.markdown('''
- The following is an interactive Candlestick chart for the price fluctuations over the past 5 years.
- Simple moving averages were computed for 20, 50 and 100 day frequencies.
- Aids in trading strategy and to better interpret the price fluctuations.''')
# download 5 year crypto prices from Yahoo Finance
df = yf.download(tickers=f'{select_token}-{select_fiat}', period = '5y', interval = '1d')
# compute moving averages
df['MA100'] = df.Close.rolling(100).mean()
df['MA50'] = df.Close.rolling(50).mean()
df['MA20'] = df.Close.rolling(20).mean()
# Plotly candlestick chart
fig = go.Figure(data=
[go.Candlestick(x=df.index,
open=df.Open,
high=df.High,
low=df.Low,
close=df.Close,
name=f'{select_token}'),
go.Scatter(x=df.index, y=df.MA20,
line=dict(color='yellow',width=1),name='MA20'),
go.Scatter(x=df.index, y=df.MA50,
line=dict(color='green',width=1),name='MA50'),
go.Scatter(x=df.index, y=df.MA100,
line=dict(color='red',width=1),name='MA100')])
fig.update_layout(go.Layout(xaxis = {'showgrid': False},
yaxis = {'showgrid': False}),
title=f'{dic1[select_token]} Price Fluctuation with Moving Averages',
yaxis_title=f'Price ({select_fiat})',
xaxis_rangeslider_visible=False)
st.plotly_chart(fig, use_container_width=True)
#-------------------
# Line Chart with daily trends
#-------------------
st.markdown('## Daily Trends')
st.markdown(f'''
- Line graph below shows the price fluctuation of {dic1[select_token]} every minute for today's date ({today}).
- The data is automatically updated for the current day.
- The horizontal line shows the current day's open price.
- Green portion indicates the price greater than open price and red for lower.
''')
# download daily crypto prices from Yahoo Finance
df = yf.download(tickers=f'{select_token}-{select_fiat}', period = '1d', interval = '1m')
# Plotly line chart
fig = go.Figure()
fig.add_scattergl(x=df.index, y=df.Close,
line={'color': 'green'},name='Up trend')
fig.add_scattergl(x=df.index, y=df.Close.where(df.Close <= df.Open[0]),
line={'color': 'red'},name='Down trend')
fig.add_hline(y=df.Open[0])
fig.update_layout(go.Layout(xaxis = {'showgrid': False},
yaxis = {'showgrid': False}),
title=f'{dic1[select_token]} Daily Trends in Comparison to Open Price',
yaxis_title=f'Price ({select_fiat})',template='plotly_dark',
xaxis_rangeslider_visible=False)
st.plotly_chart(fig, use_container_width=True)
#-------------------
# Table showing top 25 cryptos
#-------------------
st.markdown('## Top 25 Cryptocurrency Prices and Stats')
st.markdown('''
- Realtime price changes (in USD).
- Values updated every few minutes.
- Colour coded column indicates the increase or decrease in price.
''')
# create table from webscraped data
df_scrape = df_scrape.rename(columns={'Symbol':'Token'})
df_scrape['% Change'] = df_scrape['% Change'].str.replace('%','').str.replace(',','').astype(float)
df_scrape["color"] = df_scrape["% Change"].map(lambda x:'red' if x<0 else 'green')
cols_to_show = ['Name','Token', 'Price', '% Change', 'Market Cap']
# to change color of "% change" column
fill_color = []
n = len(df_scrape)
for col in cols_to_show:
if col!='% Change':
fill_color.append(['black']*n)
else:
fill_color.append(df_scrape["color"].to_list())
# Plotly Table
data=[go.Table(columnwidth = [20,15,15,15,15],
header=dict(values=[f"<b>{col}</b>" for col in cols_to_show],
font=dict(color='white', size=20),
height=30,
line_color='black',
fill_color='dimgrey',
align=['left','left', 'right','right','right']),
cells=dict(values=df_scrape[cols_to_show].values.T,
fill_color=fill_color,
font=dict(color='white', size=20),
height=30,
line_color='black',
align=['left','left', 'right','right','right']))]
fig = go.Figure(data=data)
fig.update_layout(go.Layout(xaxis = {'showgrid': False},
yaxis = {'showgrid': False}))
st.plotly_chart(fig, use_container_width=True)
|