Spaces:
Runtime error
Runtime error
File size: 10,736 Bytes
642c876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import streamlit as st
import requests
import json
import plotly.express as px
import pandas as pd
import datetime as dt
from risk_metrics import annual_return, absolute_return, annual_vol, max_drawdown
try:
from PIL import Image
except ImportError:
import Image
import numpy as np
st.markdown(
"""
<style>
.css-1inwz65 {
font-size: 0px;
}
</style>
""",
unsafe_allow_html = True
)
def load_data(limit='10'):
'''
Returns a dictionary with data for each of the top 'limit' cypto currencies
ranked by market cap. The data is generated by querying the coincap API
/assets endpoint. See coincap documentation for more info:
https://docs.coincap.io/
Parameters:
limit (str): The number of crypto coins that you want to return data for.
Ranked in order of market cap.
Returns:
(dict): A dictionary object of data.
'''
url = "https://api.coincap.io/v2/assets"
# N.B. here adampt the params dict to only request what you need
payload={'limit': limit}
headers = {}
return requests.request("GET", url, params=payload, headers=headers).json()
def load_histories(ids_list):
url = "http://api.coincap.io/v2/assets/{}/history?interval=d1"
payload={}
headers = {}
histories_dict = {}
for id in ids_list:
response_histories = requests.request("GET", url.format(id), headers=headers, data=payload)
histories_json = response_histories.json()
histories_dict[id] = histories_json['data']
return histories_dict
def gen_symbols(assets_json):
symbols_list = []
names_list = []
ids_list =[]
for dict in assets_json['data']:
symbols_list.append(dict['symbol'])
names_list.append(dict['name'])
ids_list.append(dict['id'])
return symbols_list, names_list, ids_list
def write_symbols(symbols_list):
cols = st.columns(len(symbols_list))
for i, symbol in enumerate(symbols_list):
col = cols[i]
col.image(f'logos/{symbol}.png',width=40)
globals()[st.session_state.names[i]] = col.checkbox(symbol, value = 0)
#col.checkbox(symbol, st.image(f'logos/{symbol}.png',width=40))
if "assets_json" not in st.session_state:
st.session_state.assets_json = load_data()
symbols, names, ids = gen_symbols(st.session_state.assets_json)
st.session_state.symbols = symbols
st.session_state.names = names
st.session_state.ids = ids
st.session_state.histories = load_histories(ids)
id_symbol_map = {}
for i, id in enumerate(ids):
id_symbol_map[id]=symbols[i]
st.session_state.id_symbol_map = id_symbol_map
#write_symbols(st.session_state.symbols)
symbols_list = st.session_state.symbols
names_list = st.session_state.names
ids_list = st.session_state.ids
asset_json = st.session_state.assets_json
histories_dict = st.session_state.histories
id_symbol_map = st.session_state.id_symbol_map
def date_conv(date):
return dt.datetime.strptime(date, '%Y-%m-%d')
price_histories_df = pd.DataFrame(columns=['coin','date','price'])
return_histories_df = pd.DataFrame(columns=['coin','date','price'])
for id in ids_list:
price=[]
date=[]
for observation in histories_dict[id]:
date.append(date_conv(observation['date'][0:10]))
#date.append(observation['time'])
price.append(float(observation['priceUsd']))
price_df = pd.DataFrame({"coin": id, "date":date, "price": price})
price_histories_df = pd.concat([price_histories_df, price_df])
returns = [float(b) / float(a) for b,a in zip(price[1:], price[:-1])]
returns_df = pd.DataFrame({"coin": id, "date":date[1:], "price": returns})
return_histories_df = pd.concat([return_histories_df, returns_df])
start_date = dt.date.today()-dt.timedelta(360)
rebased_prices_df = pd.DataFrame(columns=['coin','date','price','rebased_price'])
for id in ids_list:
temp_rebase_df = return_histories_df[(return_histories_df['date']>=pd.Timestamp(start_date))
& (return_histories_df['coin']==id)]
rebased_price=[1]
for i in range(1,len(temp_rebase_df)):
rebased_price.append(temp_rebase_df['price'].iloc[i]*rebased_price[i-1])
temp_rebase_df['rebased_price']=rebased_price
rebased_prices_df = pd.concat([rebased_prices_df, temp_rebase_df])
fig2 = px.line(rebased_prices_df, x="date", y="rebased_price", color="coin")
st.write(fig2)
cols = st.columns(len(symbols_list))
checkboxes=[]
def write_coins(id_symbol_map, n_cols=5):
n_coins = len(id_symbol_map)
n_rows = 1 + n_coins // int(n_cols)
rows = [st.container() for _ in range(n_rows)]
cols_per_row = [r.columns(n_cols) for r in rows]
cols = [column for row in cols_per_row for column in row]
#cols = st.columns(n_coins)
#checkboxes=[]
for i, id in enumerate(id_symbol_map):
cols[i].image('logos/{}.png'.format(id_symbol_map[id]),width=40)
globals()[st.session_state.names[i]] = cols[i].checkbox("include", value = 1, key=id)
globals()["slider_"+ids_list[i]] = cols[i].slider(id, min_value=0, max_value=100, value=50, key=id)
checkboxes.append(globals()[st.session_state.names[i]])
write_coins(id_symbol_map)
#for i, symbol in enumerate(symbols_list):
# col = cols[i]
# col.image(f'logos/{symbol}.png',width=40)
# globals()[st.session_state.names[i]] = col.checkbox(symbol, value = 1)
# checkboxes.append(globals()[st.session_state.names[i]])
#if any(checkboxes):
# checked_ids=[]
# cols2 = st.columns(sum(checkboxes))
# j=0
# for i, value in enumerate(checkboxes):
# if value==1:
# checked_ids.append(ids_list[i])
# col2=cols2[j]
# col2.image(f'logos/{symbols_list[i]}.png',width=20)
# j+=1
def create_grid(top_left, bottom_right):
num_rows=3
num_cols=7
col_positions = np.linspace(top_left[0], bottom_right[0], num=num_cols)
row_positions = np.linspace(top_left[1], bottom_right[1], num=num_rows)
return [(int(col_positions[i]),int(row_positions[j])) for j in range(num_rows) for i in range(num_cols)]
# These are the coordinates of the top left and bottom right of the cart image
# given it's curent size. You need to change these if you change the size of the
# cart
top_left=[300,300]
bottom_right=[650, 450]
grid = create_grid(top_left, bottom_right)
def add_logo(background, symbol, position, size=(70,70)):
bg = Image.open(background)
fg = Image.open("logos/{}.png".format(symbol))
bg = bg.convert("RGBA")
fg = fg.convert("RGBA")
# Resize logo
fg_resized = fg.resize(size)
# Overlay logo onto background at position
bg.paste(fg_resized,box=position,mask=fg_resized)
# Save result
bg.save(background)
cart_cols = st.columns([3,2])
if any(checkboxes):
checked_ids=[]
for i, value in enumerate(checkboxes):
if value==1:
checked_ids.append(ids_list[i])
#cart_cols[1].image(f'logos/{symbols_list[i]}.png',width=20)
#cart_cols[2].slider(ids_list[i],min_value=0, max_value=100, value=50)
# change the below to make it run only if checked_ids ecists - i.e. wrap it up oin a function
original = Image.open("images/cart.png")
original.save('images/background.png')
position_ids = [round(x) for x in np.linspace(0, len(grid)-1, num=len(checked_ids))]
for i, id in enumerate(checked_ids):
size = tuple([int(num * globals()["slider_"+id]/50) for num in (70,70)])
add_logo('images/background.png', id_symbol_map[id], grid[position_ids[i]], size=size)
weights=[]
for id in checked_ids:
weights.append(globals()["slider_"+id])
sum_weights = sum(weights)
weights = [weight/sum_weights for weight in weights]
weights_df = pd.DataFrame({'ids':checked_ids, 'weights': weights, 'portfolio': 'port_1'})
pie_fig = px.pie(weights_df, values='weights', names='ids')
pie_fig.update_layout(showlegend=False)
bar_fig = px.bar(weights_df, x="portfolio", y="weights", color="ids", width=200)
bar_fig.update_layout(showlegend=False)
cart_cols[0].image('images/background.png', width=400)
cart_cols[1].write(bar_fig)
gen_port = st.button('Generate portfolio return')
metrics_dict= {'annual_return' : "Return (annualised)", 'absolute_return': "Return over period",
'annual_vol': 'Annual volatility', 'max_drawdown': 'Max loss'}
def write_metrics(prices, *metrics):
for metric in metrics:
cols = st.columns(2)
if metric.__name__ == 'max_drawdown':
cols[0].write(metrics_dict[metric.__name__] +': ')
cols[1].write('{:.2%}'.format(metric(prices)[0]))
else:
cols[0].write(metrics_dict[metric.__name__] +': ')
cols[1].write('{:.2%}'.format(metric(prices)))
if gen_port:
# adjust weight calculation to read in from globals()["slider_"+ids_list[i]]
#weights = [1/len(checked_ids)]*len(checked_ids)
portfolio_dict={checked_ids[i]:weights[i] for i in range(len(checked_ids))}
start_date = dt.date.today()-dt.timedelta(360)
weighted_prices_df = pd.DataFrame(columns=['coin','date','price','weighted_price'])
for id in checked_ids:
temp_weight_df = return_histories_df[(return_histories_df['date']>=pd.Timestamp(start_date))
& (return_histories_df['coin']==id)]
weighted_price=[portfolio_dict[id]]
for i in range(1,len(temp_weight_df)):
weighted_price.append(temp_weight_df['price'].iloc[i]*weighted_price[i-1])
temp_weight_df['weighted_price']=weighted_price
weighted_prices_df = pd.concat([weighted_prices_df, temp_weight_df])
date_list = [start_date + dt.timedelta(days=x) for x in range(360)]
port_returns=[]
for date in date_list:
port_returns.append(weighted_prices_df['weighted_price'][weighted_prices_df['date']==pd.Timestamp(date)].sum())
port_returns_df = pd.DataFrame({'date':date_list, 'price': port_returns})
prices = port_returns_df['price']
max_dd, start_idx, end_idx = max_drawdown(prices)
start_dt = port_returns_df['date'].iloc[start_idx]
end_dt = port_returns_df['date'].iloc[end_idx]
fig3 = px.line(port_returns_df, x="date", y="price")
fig3.add_vline(x=start_dt, line_width=1, line_color="red")
fig3.add_vline(x=end_dt, line_width=1, line_color="red")
fig3.add_vrect(x0=start_dt, x1=end_dt, line_width=0, fillcolor="red", opacity=0.05, annotation_text="max loss ")
st.write(fig3)
st.title("Risk metrics")
write_metrics(prices, absolute_return, annual_return, annual_vol, max_drawdown)
#for i, symbol in enumerate(symbols_list):
# col2 = cols2[i]
# col.image(f'logos/{symbol}.png',width=40)
#price_subset_df = price_histories_df[price_histories_df['coin'].isin(checked_ids)]
#rebased_subset_df = rebased_prices_df[rebased_prices_df['coin'].isin(checked_ids)]
#fig1 = px.line(price_subset_df, x="date", y="price", color="coin")
#st.write(fig1)
#fig2 = px.line(rebased_subset_df, x="date", y="rebased_price", color="coin")
#st.write(fig2)
|