File size: 22,397 Bytes
7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 1fa2e92 7850a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
import base64
import json
import os
from google.oauth2 import service_account
import vertexai
from remittance_pdf_processing_utils import remittance_logger
from vertexai.generative_models import GenerativeModel, Part
import vertexai.preview.generative_models as generative_models
from remittance_pdf_processing_types import InvoiceNumbers,PaymentAmount
from remittance_pdf_processing_utils import remove_duplicate_lists
# Set up authentication
def initialize_vertexai():
# Get the base64-encoded service account JSON from an environment variable
encoded_sa_json = os.environ.get('VERTEX_AI_SERVICE_ACCOUNT_JSON')
if not encoded_sa_json:
raise ValueError("VERTEX_AI_SERVICE_ACCOUNT_JSON environment variable is not set")
try:
# Decode the base64 string to get the JSON content
sa_json_str = base64.b64decode(encoded_sa_json).decode('utf-8')
sa_info = json.loads(sa_json_str)
# Create credentials object from the decoded JSON
credentials = service_account.Credentials.from_service_account_info(
sa_info,
scopes=['https://www.googleapis.com/auth/cloud-platform']
)
# Initialize Vertex AI with the credentials
vertexai.init(project="saltech-ai-sandbox", location="us-central1", credentials=credentials)
print("Vertex AI initialized successfully.")
except json.JSONDecodeError:
raise ValueError("Invalid JSON format in the decoded service account information")
except Exception as e:
raise Exception(f"Error initializing Vertex AI: {str(e)}")
# Call this function at the start of your script or in your main function
initialize_vertexai()
def extract_invoice_numbers_with_vertex_ai(base64_image: str, multi_hop: bool = False) -> list[InvoiceNumbers]:
"""
Dispatches the invoice number extraction to either single-hop or multi-hop method based on the multi_hop parameter.
Args:
base64_image (str): The base64-encoded image string.
multi_hop (bool): Whether to use multi-hop processing.
Returns:
list[InvoiceNumbers]: A list containing lists of extracted invoice numbers.
"""
if multi_hop:
return extract_invoice_numbers_with_vertex_ai_multi_hop(base64_image)
else:
return extract_invoice_numbers_with_vertex_ai_single_hop(base64_image)
def extract_invoice_numbers_with_vertex_ai_single_hop(base64_image: str) -> list[InvoiceNumbers]:
"""
Extracts invoice numbers from a single base64-encoded image using Google's Gemini Flash model with single-hop processing.
Args:
base64_image (str): The base64-encoded image string.
Returns:
list[InvoiceNumbers]: A list containing lists of extracted invoice numbers.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
image_part = Part.from_data(
mime_type="image/png",
data=base64.b64decode(base64_image),
)
text_prompt = """Given the remittance letter image, extract all invoice numbers.
Respond with a comma-separated list of invoice numbers only.
If no invoice numbers are found, respond with 'No invoice numbers found'."""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
responses = model.generate_content(
[image_part, text_prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
full_response = ""
for response in responses:
full_response += response.text
remittance_logger.debug(f"Extracted invoice numbers (raw model response): {full_response}")
extracted_numbers = parse_gemini_response(full_response)
return [extracted_numbers] # Wrap in a list to match the expected return type
def extract_column_headers(base64_image: str) -> list[str]:
"""
Extracts column header names that could contain invoice numbers from a base64-encoded image.
Args:
base64_image (str): The base64-encoded image string.
Returns:
list[str]: A list of column header names.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
image_part = Part.from_data(
mime_type="image/png",
data=base64.b64decode(base64_image),
)
text_prompt = """Given the remittance letter image, extract all column header names that could contain invoice numbers.
Respond with a comma-separated list only."""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
responses = model.generate_content(
[image_part, text_prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
full_response = ""
for response in responses:
full_response += response.text
remittance_logger.debug(f"Extracted column headers (raw model response): {full_response}")
return [header.strip() for header in full_response.split(',')]
def extract_invoice_numbers_for_column(base64_image: str, column_name: str) -> InvoiceNumbers:
"""
Extracts invoice numbers from a specific column in a base64-encoded image.
Args:
base64_image (str): The base64-encoded image string.
column_name (str): The name of the column to extract invoice numbers from.
Returns:
InvoiceNumbers: A list of extracted invoice numbers for the specified column.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
image_part = Part.from_data(
mime_type="image/png",
data=base64.b64decode(base64_image),
)
text_prompt = f"""Given the remittance letter image, extract all invoice numbers from the column "{column_name}".
Respond with a comma-separated list only."""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
responses = model.generate_content(
[image_part, text_prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
full_response = ""
for response in responses:
full_response += response.text
remittance_logger.debug(f"Extracted invoice numbers for column '{column_name}' (raw model response): {full_response}")
return [number.strip() for number in full_response.split(',') if number.strip()]
def extract_invoice_numbers_with_vertex_ai_multi_hop(base64_image: str) -> list[InvoiceNumbers]:
"""
Extracts invoice numbers from a single base64-encoded image using Google's Gemini Flash model with multi-hop processing.
Args:
base64_image (str): The base64-encoded image string.
Returns:
list[InvoiceNumbers]: A list containing lists of extracted invoice numbers for each processed column.
"""
# First hop: Extract column headers
column_headers = extract_column_headers(base64_image)
remittance_logger.debug(f"Extracted column headers: {column_headers}")
# Second hop: Extract invoice numbers for each column (up to 3 columns)
all_invoice_numbers = []
for column_name in column_headers[:3]:
invoice_numbers = extract_invoice_numbers_for_column(base64_image, column_name)
remittance_logger.debug(f"Extracted invoice numbers for column '{column_name}': {invoice_numbers}")
if invoice_numbers: # Only add non-empty lists
all_invoice_numbers.append(invoice_numbers)
# Remove duplicate lists using the utility function
unique_invoice_numbers = remove_duplicate_lists(all_invoice_numbers)
return unique_invoice_numbers
# def extract_invoice_numbers_from_text_with_vertex_ai(text: str, multi_hop: bool = False) -> list[InvoiceNumbers]:
# """
# Extracts invoice numbers from text using Google's Gemini Flash model.
# Args:
# text (str): The text of the remittance letter.
# multi_hop (bool): Whether to use multi-hop processing (not implemented yet).
# Returns:
# list[InvoiceNumbers]: A list containing lists of extracted invoice numbers.
# """
# vertexai.init(project="saltech-ai-sandbox", location="us-central1")
# model = GenerativeModel("gemini-1.5-flash-001")
# prompt = f"""Given the following remittance letter text, extract all invoice numbers.
# Respond with a comma-separated list of invoice numbers only.
# If no invoice numbers are found, respond with 'No invoice numbers found'.
# Remittance letter text:
# {text}
# """
# generation_config = {
# "max_output_tokens": 8192,
# "temperature": 0.1,
# "top_p": 0.95,
# }
# safety_settings = {
# generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
# generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
# generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
# generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
# }
# responses = model.generate_content(
# prompt,
# generation_config=generation_config,
# safety_settings=safety_settings,
# stream=True,
# )
# full_response = ""
# for response in responses:
# full_response += response.text
# remittance_logger.debug(f"Vertex AI invoice numbers full response: {full_response}")
# extracted_numbers = parse_gemini_response(full_response)
# return [extracted_numbers] # Wrap in a list to match the expected return type
def parse_gemini_response(response: str) -> list[str]:
"""
Parses the response from Gemini Flash model and extracts invoice numbers.
Args:
response (str): The response string from Gemini Flash model.
Returns:
list[str]: A list of extracted invoice numbers.
"""
if response.strip().lower().startswith('no invoice numbers found'):
return []
# Split the comma-separated list and strip whitespace from each number
invoice_numbers = [num.strip() for num in response.split(',')]
return invoice_numbers
# Note: You'll need to set up authentication for Google Cloud.
# Typically, you'd set the GOOGLE_APPLICATION_CREDENTIALS environment variable
# to point to your service account key file.
def extract_invoice_numbers_from_text_with_vertex_ai(text: str, multi_hop: bool = False) -> list[InvoiceNumbers]:
"""
Dispatches the invoice number extraction to either single-hop or multi-hop method based on the multi_hop parameter.
Args:
text (str): The text of the remittance letter.
multi_hop (bool): Whether to use multi-hop processing.
Returns:
list[InvoiceNumbers]: A list containing lists of extracted invoice numbers.
"""
if multi_hop:
return extract_invoice_numbers_from_text_with_vertex_ai_multi_hop(text)
else:
return extract_invoice_numbers_from_text_with_vertex_ai_single_hop(text)
def extract_invoice_numbers_from_text_with_vertex_ai_single_hop(text: str) -> list[InvoiceNumbers]:
"""
Extracts invoice numbers from text using Google's Gemini Flash model with single-hop processing.
Args:
text (str): The text of the remittance letter.
Returns:
list[InvoiceNumbers]: A list containing lists of extracted invoice numbers.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
prompt = f"""Given the following remittance letter text, extract all invoice numbers.
Respond with a comma-separated list of invoice numbers only.
If no invoice numbers are found, respond with 'No invoice numbers found'.
Remittance letter text:
{text}
"""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
responses = model.generate_content(
prompt,
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
full_response = ""
for response in responses:
full_response += response.text
remittance_logger.debug(f"Vertex AI invoice numbers full response (single-hop): {full_response}")
extracted_numbers = parse_gemini_response(full_response)
return [extracted_numbers] # Wrap in a list to match the expected return type
def extract_invoice_numbers_from_text_with_vertex_ai_multi_hop(text: str) -> list[InvoiceNumbers]:
"""
Extracts invoice numbers from text using Google's Gemini Flash model with multi-hop processing.
Args:
text (str): The text of the remittance letter.
Returns:
list[InvoiceNumbers]: A list containing lists of extracted invoice numbers for each processed column.
"""
# First hop: Extract column headers
column_headers = extract_column_headers_from_text(text)
remittance_logger.debug(f"Extracted column headers: {column_headers}")
# Second hop: Extract invoice numbers for each column (up to 3 columns)
all_invoice_numbers = []
for column_name in column_headers[:3]:
invoice_numbers = extract_invoice_numbers_for_column_from_text(text, column_name)
remittance_logger.debug(f"Extracted invoice numbers for column '{column_name}': {invoice_numbers}")
if invoice_numbers: # Only add non-empty lists
all_invoice_numbers.append(invoice_numbers)
# Remove duplicate lists using the utility function
unique_invoice_numbers = remove_duplicate_lists(all_invoice_numbers)
return unique_invoice_numbers
def extract_column_headers_from_text(text: str) -> list[str]:
"""
Extracts column header names that could contain invoice numbers from the text.
Args:
text (str): The text of the remittance letter.
Returns:
list[str]: A list of column header names.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
prompt = f"""Given the following remittance letter text, extract all column header names or section titles that could contain invoice numbers.
Respond with a comma-separated list only.
Remittance letter text:
{text}
"""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
response = model.generate_content(
prompt,
generation_config=generation_config,
safety_settings=safety_settings,
)
remittance_logger.debug(f"Extracted column headers (raw model response): {response.text}")
return [header.strip() for header in response.text.split(',')]
def extract_invoice_numbers_for_column_from_text(text: str, column_name: str) -> InvoiceNumbers:
"""
Extracts invoice numbers from a specific column or section in the text.
Args:
text (str): The text of the remittance letter.
column_name (str): The name of the column or section to extract invoice numbers from.
Returns:
InvoiceNumbers: A list of extracted invoice numbers for the specified column.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
prompt = f"""Given the following remittance letter text, extract all invoice numbers from the column or section "{column_name}".
Respond with a comma-separated list only. If no invoice numbers are found, respond with 'No invoice numbers found'.
Remittance letter text:
{text}
"""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
response = model.generate_content(
prompt,
generation_config=generation_config,
safety_settings=safety_settings,
)
remittance_logger.debug(f"Extracted invoice numbers for column '{column_name}' (raw model response): {response.text}")
return parse_gemini_response(response.text)
def extract_payment_amounts_with_vertex_ai(base64_image: str) -> list[PaymentAmount]:
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
image_part = Part.from_data(
mime_type="image/png",
data=base64.b64decode(base64_image),
)
text_prompt = """Given the remittance letter image, extract the total payment amount.
Respond with the payment amount only.
If no payment amounts are found, respond with 'No payment amounts found'."""
generation_config = {
"max_output_tokens": 256,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
responses = model.generate_content(
[image_part, text_prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
full_response = ""
for response in responses:
full_response += response.text
remittance_logger.debug(f"Vertex AI payment amount full response: {full_response}")
extracted_amounts = parse_gemini_payment_response(full_response)
return extracted_amounts
def extract_payment_amounts_from_text_with_vertex_ai(text: str) -> list[PaymentAmount]:
"""
Extracts payment amounts from text using Google's Gemini Flash model.
Args:
text (str): The text of the remittance letter.
Returns:
list[PaymentAmount]: A list of extracted payment amounts.
"""
vertexai.init(project="saltech-ai-sandbox", location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001")
prompt = f"""Given the following remittance letter text, extract the total payment amount.
Respond with the payment amount only.
If no payment amounts are found, respond with 'No payment amounts found'.
Remittance letter text:
{text}
"""
generation_config = {
"max_output_tokens": 256,
"temperature": 0.1,
"top_p": 0.95,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
safety_settings = {}
response = model.generate_content(
prompt,
generation_config=generation_config,
safety_settings=safety_settings,
)
remittance_logger.debug(f"Vertex AI payment amount full response: {response.text}")
extracted_amounts = parse_gemini_payment_response(response.text)
return extracted_amounts
def parse_gemini_payment_response(response: str) -> list[PaymentAmount]:
"""
Parses the response from Gemini Flash model and extracts payment amounts.
Args:
response (str): The response string from Gemini Flash model.
Returns:
list[PaymentAmount]: A list of one extracted payment amount (or empty).
"""
if response.strip().lower() == 'no payment amounts found':
return []
payment_amounts = [response.strip()]
return payment_amounts
def extract_payment_amounts_from_base64_images(base64_images: list[str]) -> list[PaymentAmount]:
# Implementation similar to extract_invoice_numbers_with_vertex_ai
# but focused on extracting payment amounts
return [] |