Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
from RAG import GitHubGPT # Assuming this is the class from your notebook | |
import os | |
# Load environment variables | |
load_dotenv() | |
# Initialize the GitHubGPT class (adjust based on the actual class name and usage) | |
gpt_bot = GitHubGPT() | |
# Set up the title and description | |
st.title("GitHubGPT Chatbot") | |
st.write("Interact with your codebase through this RAG-based chatbot!") | |
# Initialize chat history if not already done | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input using the new chat_input component | |
if prompt := st.chat_input("Type your message here..."): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Generate and display chatbot response | |
with st.chat_message("assistant"): | |
# Replace the following line with the actual call to your chatbot's query method | |
response = gpt_bot.query(prompt) | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |