Spaces:
Runtime error
Runtime error
anonymoussubmitter222
commited on
Commit
·
0fdcdc4
1
Parent(s):
be9098b
voila
Browse files- TunisianASR/results/14epoch_tunisian/1234/app.py +772 -0
- TunisianASR/results/14epoch_tunisian/1234/env.log +391 -259
- TunisianASR/results/14epoch_tunisian/1234/hyperparams.yaml +2 -2
- TunisianASR/results/14epoch_tunisian/1234/log.txt +491 -0
- __pycache__/cv_train.cpython-38.pyc +0 -0
- app.py +3 -3
- pretrained_models/asr-wav2vec2-commonvoice-fr/custom.py +1 -1
- results/non_semi_final_stac/app.py +772 -0
- results/non_semi_final_stac/env.log +479 -0
- results/non_semi_final_stac/hyperparams.yaml +2 -2
- results/non_semi_final_stac/log.txt +0 -0
TunisianASR/results/14epoch_tunisian/1234/app.py
ADDED
|
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import logging
|
| 5 |
+
import speechbrain as sb
|
| 6 |
+
from speechbrain.utils.distributed import run_on_main
|
| 7 |
+
from hyperpyyaml import load_hyperpyyaml
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import torchaudio.transforms as T
|
| 10 |
+
from cv_train import ASRCV
|
| 11 |
+
import torchaudio
|
| 12 |
+
import numpy as np
|
| 13 |
+
import kenlm
|
| 14 |
+
from pyctcdecode import build_ctcdecoder
|
| 15 |
+
import re
|
| 16 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 17 |
+
import torch.optim as optim
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 22 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(["TunisianASR/semi_trained.yaml"])
|
| 23 |
+
|
| 24 |
+
# If distributed_launch=True then
|
| 25 |
+
# create ddp_group with the right communication protocol
|
| 26 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
| 27 |
+
|
| 28 |
+
with open(hparams_file) as fin:
|
| 29 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
| 30 |
+
|
| 31 |
+
# Create experiment directory
|
| 32 |
+
sb.create_experiment_directory(
|
| 33 |
+
experiment_directory=hparams["output_folder"],
|
| 34 |
+
hyperparams_to_save=hparams_file,
|
| 35 |
+
overrides=overrides,
|
| 36 |
+
)
|
| 37 |
+
# Dataset prep (parsing Librispeech)
|
| 38 |
+
|
| 39 |
+
def dataio_prepare(hparams):
|
| 40 |
+
"""This function prepares the datasets to be used in the brain class.
|
| 41 |
+
It also defines the data processing pipeline through user-defined functions."""
|
| 42 |
+
|
| 43 |
+
# 1. Define datasets
|
| 44 |
+
data_folder = hparams["data_folder"]
|
| 45 |
+
|
| 46 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
| 47 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if hparams["sorting"] == "ascending":
|
| 51 |
+
# we sort training data to speed up training and get better results.
|
| 52 |
+
train_data = train_data.filtered_sorted(
|
| 53 |
+
sort_key="duration",
|
| 54 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
| 55 |
+
)
|
| 56 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
| 57 |
+
hparams["dataloader_options"]["shuffle"] = False
|
| 58 |
+
|
| 59 |
+
elif hparams["sorting"] == "descending":
|
| 60 |
+
train_data = train_data.filtered_sorted(
|
| 61 |
+
sort_key="duration",
|
| 62 |
+
reverse=True,
|
| 63 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
| 64 |
+
)
|
| 65 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
| 66 |
+
hparams["dataloader_options"]["shuffle"] = False
|
| 67 |
+
|
| 68 |
+
elif hparams["sorting"] == "random":
|
| 69 |
+
pass
|
| 70 |
+
|
| 71 |
+
else:
|
| 72 |
+
raise NotImplementedError(
|
| 73 |
+
"sorting must be random, ascending or descending"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
| 77 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
| 78 |
+
)
|
| 79 |
+
# We also sort the validation data so it is faster to validate
|
| 80 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
| 81 |
+
test_datasets = {}
|
| 82 |
+
for csv_file in hparams["test_csv"]:
|
| 83 |
+
name = Path(csv_file).stem
|
| 84 |
+
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
| 85 |
+
csv_path=csv_file, replacements={"data_root": data_folder}
|
| 86 |
+
)
|
| 87 |
+
test_datasets[name] = test_datasets[name].filtered_sorted(
|
| 88 |
+
sort_key="duration"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# 2. Define audio pipeline:
|
| 95 |
+
@sb.utils.data_pipeline.takes("wav")
|
| 96 |
+
@sb.utils.data_pipeline.provides("sig")
|
| 97 |
+
def audio_pipeline(wav):
|
| 98 |
+
info = torchaudio.info(wav)
|
| 99 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
| 100 |
+
if len(sig.shape)>1 :
|
| 101 |
+
sig = torch.mean(sig, dim=1)
|
| 102 |
+
resampled = torchaudio.transforms.Resample(
|
| 103 |
+
info.sample_rate, hparams["sample_rate"],
|
| 104 |
+
)(sig)
|
| 105 |
+
return resampled
|
| 106 |
+
|
| 107 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
| 108 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
| 109 |
+
|
| 110 |
+
# 3. Define text pipeline:
|
| 111 |
+
@sb.utils.data_pipeline.takes("wrd")
|
| 112 |
+
@sb.utils.data_pipeline.provides(
|
| 113 |
+
"wrd", "char_list", "tokens_list", "tokens"
|
| 114 |
+
)
|
| 115 |
+
def text_pipeline(wrd):
|
| 116 |
+
yield wrd
|
| 117 |
+
char_list = list(wrd)
|
| 118 |
+
yield char_list
|
| 119 |
+
tokens_list = label_encoder.encode_sequence(char_list)
|
| 120 |
+
yield tokens_list
|
| 121 |
+
tokens = torch.LongTensor(tokens_list)
|
| 122 |
+
yield tokens
|
| 123 |
+
|
| 124 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
| 125 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
| 126 |
+
special_labels = {
|
| 127 |
+
"blank_label": hparams["blank_index"],
|
| 128 |
+
"unk_label": hparams["unk_index"]
|
| 129 |
+
}
|
| 130 |
+
label_encoder.load_or_create(
|
| 131 |
+
path=lab_enc_file,
|
| 132 |
+
from_didatasets=[train_data],
|
| 133 |
+
output_key="char_list",
|
| 134 |
+
special_labels=special_labels,
|
| 135 |
+
sequence_input=True,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# 4. Set output:
|
| 139 |
+
sb.dataio.dataset.set_output_keys(
|
| 140 |
+
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
|
| 141 |
+
)
|
| 142 |
+
return train_data, valid_data,test_datasets, label_encoder
|
| 143 |
+
|
| 144 |
+
class ASR(sb.core.Brain):
|
| 145 |
+
def compute_forward(self, batch, stage):
|
| 146 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
| 147 |
+
|
| 148 |
+
batch = batch.to(self.device)
|
| 149 |
+
wavs, wav_lens = batch.sig
|
| 150 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
| 151 |
+
|
| 152 |
+
if stage == sb.Stage.TRAIN:
|
| 153 |
+
if hasattr(self.hparams, "augmentation"):
|
| 154 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
| 155 |
+
|
| 156 |
+
# Forward pass
|
| 157 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
| 158 |
+
x = self.modules.enc(feats)
|
| 159 |
+
logits = self.modules.ctc_lin(x)
|
| 160 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 161 |
+
|
| 162 |
+
return p_ctc, wav_lens
|
| 163 |
+
|
| 164 |
+
def custom_encode(self,wavs,wav_lens) :
|
| 165 |
+
wavs = wavs.to("cpu")
|
| 166 |
+
if(wav_lens is not None): wav_lens.to(self.device)
|
| 167 |
+
|
| 168 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
| 169 |
+
x = self.modules.enc(feats)
|
| 170 |
+
logits = self.modules.ctc_lin(x)
|
| 171 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 172 |
+
|
| 173 |
+
return feats,p_ctc
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def compute_objectives(self, predictions, batch, stage):
|
| 178 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
| 179 |
+
|
| 180 |
+
p_ctc, wav_lens = predictions
|
| 181 |
+
|
| 182 |
+
ids = batch.id
|
| 183 |
+
tokens, tokens_lens = batch.tokens
|
| 184 |
+
|
| 185 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
| 186 |
+
|
| 187 |
+
if stage != sb.Stage.TRAIN:
|
| 188 |
+
predicted_tokens = sb.decoders.ctc_greedy_decode(
|
| 189 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
| 190 |
+
)
|
| 191 |
+
# Decode token terms to words
|
| 192 |
+
if self.hparams.use_language_modelling:
|
| 193 |
+
predicted_words = []
|
| 194 |
+
for logs in p_ctc:
|
| 195 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
| 196 |
+
predicted_words.append(text.split(" "))
|
| 197 |
+
else:
|
| 198 |
+
predicted_words = [
|
| 199 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
| 200 |
+
for utt_seq in predicted_tokens
|
| 201 |
+
]
|
| 202 |
+
# Convert indices to words
|
| 203 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
| 204 |
+
|
| 205 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
| 206 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
| 207 |
+
|
| 208 |
+
return loss
|
| 209 |
+
|
| 210 |
+
def fit_batch(self, batch):
|
| 211 |
+
"""Train the parameters given a single batch in input"""
|
| 212 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
| 213 |
+
# Managing automatic mixed precision
|
| 214 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
| 215 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
| 216 |
+
if self.auto_mix_prec:
|
| 217 |
+
with torch.cuda.amp.autocast():
|
| 218 |
+
with self.no_sync():
|
| 219 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 220 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 221 |
+
with self.no_sync(not should_step):
|
| 222 |
+
self.scaler.scale(
|
| 223 |
+
loss / self.grad_accumulation_factor
|
| 224 |
+
).backward()
|
| 225 |
+
if should_step:
|
| 226 |
+
|
| 227 |
+
if not self.hparams.wav2vec2.freeze:
|
| 228 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
| 229 |
+
self.scaler.unscale_(self.model_optimizer)
|
| 230 |
+
if self.check_gradients(loss):
|
| 231 |
+
if not self.hparams.wav2vec2.freeze:
|
| 232 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
| 233 |
+
self.scaler.step(self.wav2vec_optimizer)
|
| 234 |
+
self.scaler.step(self.model_optimizer)
|
| 235 |
+
self.scaler.update()
|
| 236 |
+
self.zero_grad()
|
| 237 |
+
self.optimizer_step += 1
|
| 238 |
+
else:
|
| 239 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
| 240 |
+
# on the forward pass
|
| 241 |
+
with self.no_sync():
|
| 242 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 243 |
+
|
| 244 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 245 |
+
|
| 246 |
+
with self.no_sync(not should_step):
|
| 247 |
+
(loss / self.grad_accumulation_factor).backward()
|
| 248 |
+
if should_step:
|
| 249 |
+
if self.check_gradients(loss):
|
| 250 |
+
if not self.hparams.wav2vec2.freeze:
|
| 251 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
| 252 |
+
self.wav2vec_optimizer.step()
|
| 253 |
+
self.model_optimizer.step()
|
| 254 |
+
self.zero_grad()
|
| 255 |
+
self.optimizer_step += 1
|
| 256 |
+
|
| 257 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
| 258 |
+
return loss.detach().cpu()
|
| 259 |
+
|
| 260 |
+
def evaluate_batch(self, batch, stage):
|
| 261 |
+
"""Computations needed for validation/test batches"""
|
| 262 |
+
predictions = self.compute_forward(batch, stage=stage)
|
| 263 |
+
with torch.no_grad():
|
| 264 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
| 265 |
+
return loss.detach()
|
| 266 |
+
|
| 267 |
+
def on_stage_start(self, stage, epoch):
|
| 268 |
+
"""Gets called at the beginning of each epoch"""
|
| 269 |
+
if stage != sb.Stage.TRAIN:
|
| 270 |
+
self.cer_metric = self.hparams.cer_computer()
|
| 271 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
| 272 |
+
|
| 273 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
| 274 |
+
"""Gets called at the end of an epoch."""
|
| 275 |
+
# Compute/store important stats
|
| 276 |
+
stage_stats = {"loss": stage_loss}
|
| 277 |
+
if stage == sb.Stage.TRAIN:
|
| 278 |
+
self.train_stats = stage_stats
|
| 279 |
+
else:
|
| 280 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
| 281 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
| 282 |
+
|
| 283 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
| 284 |
+
if stage == sb.Stage.VALID:
|
| 285 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
| 286 |
+
stage_stats["loss"]
|
| 287 |
+
)
|
| 288 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
| 289 |
+
stage_stats["loss"]
|
| 290 |
+
)
|
| 291 |
+
sb.nnet.schedulers.update_learning_rate(
|
| 292 |
+
self.model_optimizer, new_lr_model
|
| 293 |
+
)
|
| 294 |
+
if not self.hparams.wav2vec2.freeze:
|
| 295 |
+
sb.nnet.schedulers.update_learning_rate(
|
| 296 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
| 297 |
+
)
|
| 298 |
+
self.hparams.train_logger.log_stats(
|
| 299 |
+
stats_meta={
|
| 300 |
+
"epoch": epoch,
|
| 301 |
+
"lr_model": old_lr_model,
|
| 302 |
+
"lr_wav2vec": old_lr_wav2vec,
|
| 303 |
+
},
|
| 304 |
+
train_stats=self.train_stats,
|
| 305 |
+
valid_stats=stage_stats,
|
| 306 |
+
)
|
| 307 |
+
self.checkpointer.save_and_keep_only(
|
| 308 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
| 309 |
+
)
|
| 310 |
+
elif stage == sb.Stage.TEST:
|
| 311 |
+
self.hparams.train_logger.log_stats(
|
| 312 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
| 313 |
+
test_stats=stage_stats,
|
| 314 |
+
)
|
| 315 |
+
with open(self.hparams.wer_file, "w") as w:
|
| 316 |
+
self.wer_metric.write_stats(w)
|
| 317 |
+
|
| 318 |
+
def init_optimizers(self):
|
| 319 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
| 320 |
+
|
| 321 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
| 322 |
+
if not self.hparams.wav2vec2.freeze:
|
| 323 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
| 324 |
+
self.modules.wav2vec2.parameters()
|
| 325 |
+
)
|
| 326 |
+
if self.checkpointer is not None:
|
| 327 |
+
self.checkpointer.add_recoverable(
|
| 328 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
| 332 |
+
self.hparams.model.parameters()
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
if self.checkpointer is not None:
|
| 336 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
| 337 |
+
|
| 338 |
+
def zero_grad(self, set_to_none=False):
|
| 339 |
+
if not self.hparams.wav2vec2.freeze:
|
| 340 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
| 341 |
+
self.model_optimizer.zero_grad(set_to_none)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
|
| 345 |
+
french_asr_model = EncoderASR.from_hparams(source="asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr")
|
| 346 |
+
french_asr_model.to("cpu")
|
| 347 |
+
cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["EnglishCV/train_en_with_wav2vec.yaml"])
|
| 348 |
+
with open(cvhparams_file) as cvfin:
|
| 349 |
+
cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
|
| 350 |
+
cvrun_opts["device"]="cpu"
|
| 351 |
+
english_asr_model = ASRCV(
|
| 352 |
+
modules=cvhparams["modules"],
|
| 353 |
+
hparams=cvhparams,
|
| 354 |
+
run_opts=cvrun_opts,
|
| 355 |
+
checkpointer=cvhparams["checkpointer"],
|
| 356 |
+
)
|
| 357 |
+
english_asr_model.modules.to("cpu")
|
| 358 |
+
english_asr_model.device="cpu"
|
| 359 |
+
english_asr_model.checkpointer.recover_if_possible()
|
| 360 |
+
run_opts["device"]="cpu"
|
| 361 |
+
print("moving to tunisian model")
|
| 362 |
+
asr_brain = ASR(
|
| 363 |
+
modules=hparams["modules"],
|
| 364 |
+
hparams=hparams,
|
| 365 |
+
run_opts=run_opts,
|
| 366 |
+
checkpointer=hparams["checkpointer"],
|
| 367 |
+
)
|
| 368 |
+
asr_brain.modules.to("cpu")
|
| 369 |
+
asr_brain.checkpointer.recover_if_possible()
|
| 370 |
+
asr_brain.modules.eval()
|
| 371 |
+
english_asr_model.modules.eval()
|
| 372 |
+
french_asr_model.mods.eval()
|
| 373 |
+
asr_brain.modules.to("cpu")
|
| 374 |
+
|
| 375 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 376 |
+
# %ls
|
| 377 |
+
|
| 378 |
+
#UTILS FUNCTIOJNS
|
| 379 |
+
def get_size_dimensions(arr):
|
| 380 |
+
size_dimensions = []
|
| 381 |
+
while isinstance(arr, list):
|
| 382 |
+
size_dimensions.append(len(arr))
|
| 383 |
+
arr = arr[0]
|
| 384 |
+
return size_dimensions
|
| 385 |
+
|
| 386 |
+
def scale_array(batch,n):
|
| 387 |
+
scaled_batch = []
|
| 388 |
+
|
| 389 |
+
for array in batch:
|
| 390 |
+
if(n < len(array)): raise ValueError("Cannot scale Array down")
|
| 391 |
+
|
| 392 |
+
repeat = round(n/len(array))+1
|
| 393 |
+
scaled_length_array= []
|
| 394 |
+
|
| 395 |
+
for i in array:
|
| 396 |
+
for j in range(repeat) :
|
| 397 |
+
if(len(scaled_length_array) == n): break
|
| 398 |
+
scaled_length_array.append(i)
|
| 399 |
+
|
| 400 |
+
scaled_batch.append(scaled_length_array)
|
| 401 |
+
|
| 402 |
+
return torch.tensor(scaled_batch)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def load_paths(wavs_path):
|
| 406 |
+
waveforms = []
|
| 407 |
+
for path in wavs_path :
|
| 408 |
+
waveform, _ = torchaudio.load(path)
|
| 409 |
+
waveforms.append(waveform.squeeze(0))
|
| 410 |
+
# normalize array length to the bigger arrays by pading with 0's
|
| 411 |
+
padded_arrays = pad_sequence(waveforms, batch_first=True)
|
| 412 |
+
return torch.tensor(padded_arrays)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
device = 'cpu'
|
| 417 |
+
verbose = 0
|
| 418 |
+
#FLOW LEVEL FUNCTIONS
|
| 419 |
+
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
post1 = post1.to(device)
|
| 423 |
+
post2 = post2.to(device)
|
| 424 |
+
post3 = post3.to(device)
|
| 425 |
+
embeddings1 = embeddings1.to(device)
|
| 426 |
+
embeddings2 = embeddings2.to(device)
|
| 427 |
+
embeddings3 = embeddings3.to(device)
|
| 428 |
+
|
| 429 |
+
posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
|
| 430 |
+
embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)
|
| 431 |
+
|
| 432 |
+
if(verbose !=0):
|
| 433 |
+
print('MERGED POST ',posteriograms_merged.shape)
|
| 434 |
+
print('MERGED emb ',embeddings_merged.shape)
|
| 435 |
+
|
| 436 |
+
return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)
|
| 437 |
+
|
| 438 |
+
def decode(model,wavs,wav_lens):
|
| 439 |
+
|
| 440 |
+
with torch.no_grad():
|
| 441 |
+
wav_lens = wav_lens.to(model.device)
|
| 442 |
+
encoder_out = model.encode_batch(wavs, wav_lens)
|
| 443 |
+
predictions = model.decoding_function(encoder_out, wav_lens)
|
| 444 |
+
return predictions
|
| 445 |
+
|
| 446 |
+
def middle_layer(batch, lens):
|
| 447 |
+
|
| 448 |
+
tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)
|
| 449 |
+
|
| 450 |
+
fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
|
| 451 |
+
fr_posteriogram =french_asr_model.encode_batch(batch,lens)
|
| 452 |
+
en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
|
| 453 |
+
x = english_asr_model.modules.enc(en_embeddings)
|
| 454 |
+
en_posteriogram = english_asr_model.modules.ctc_lin(x)
|
| 455 |
+
#scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
|
| 456 |
+
if(verbose !=0):
|
| 457 |
+
print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
|
| 458 |
+
print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
|
| 462 |
+
return bilangual_sample
|
| 463 |
+
|
| 464 |
+
class Mixer(sb.core.Brain):
|
| 465 |
+
|
| 466 |
+
def compute_forward(self, batch, stage):
|
| 467 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
| 468 |
+
wavs, wav_lens = batch.sig
|
| 469 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
| 470 |
+
|
| 471 |
+
if stage == sb.Stage.TRAIN:
|
| 472 |
+
if hasattr(self.hparams, "augmentation"):
|
| 473 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
| 474 |
+
|
| 475 |
+
multi_langual_feats = middle_layer(wavs, wav_lens)
|
| 476 |
+
multi_langual_feats= multi_langual_feats.to(device)
|
| 477 |
+
feats, _ = self.modules.enc(multi_langual_feats)
|
| 478 |
+
logits = self.modules.ctc_lin(feats)
|
| 479 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 480 |
+
|
| 481 |
+
if stage!= sb.Stage.TRAIN:
|
| 482 |
+
p_tokens = sb.decoders.ctc_greedy_decode(
|
| 483 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
| 484 |
+
)
|
| 485 |
+
else :
|
| 486 |
+
p_tokens = None
|
| 487 |
+
return p_ctc, wav_lens, p_tokens
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def treat_wav(self,sig):
|
| 491 |
+
multi_langual_feats = middle_layer(sig.to("cpu"), torch.tensor([1]).to("cpu"))
|
| 492 |
+
multi_langual_feats= multi_langual_feats.to(device)
|
| 493 |
+
feats, _ = self.modules.enc(multi_langual_feats)
|
| 494 |
+
logits = self.modules.ctc_lin(feats)
|
| 495 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 496 |
+
predicted_words =[]
|
| 497 |
+
for logs in p_ctc:
|
| 498 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
| 499 |
+
predicted_words.append(text.split(" "))
|
| 500 |
+
return " ".join(predicted_words[0])
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
def compute_objectives(self, predictions, batch, stage):
|
| 504 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
| 505 |
+
|
| 506 |
+
p_ctc, wav_lens , predicted_tokens= predictions
|
| 507 |
+
|
| 508 |
+
ids = batch.id
|
| 509 |
+
tokens, tokens_lens = batch.tokens
|
| 510 |
+
|
| 511 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
if stage == sb.Stage.VALID:
|
| 515 |
+
predicted_words = [
|
| 516 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
| 517 |
+
for utt_seq in predicted_tokens
|
| 518 |
+
]
|
| 519 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
| 520 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
| 521 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
| 522 |
+
if stage ==sb.Stage.TEST :
|
| 523 |
+
if self.hparams.language_modelling:
|
| 524 |
+
predicted_words = []
|
| 525 |
+
for logs in p_ctc:
|
| 526 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
| 527 |
+
predicted_words.append(text.split(" "))
|
| 528 |
+
else :
|
| 529 |
+
predicted_words = [
|
| 530 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
| 531 |
+
for utt_seq in predicted_tokens
|
| 532 |
+
]
|
| 533 |
+
|
| 534 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
| 535 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
| 536 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
| 537 |
+
|
| 538 |
+
return loss
|
| 539 |
+
|
| 540 |
+
def fit_batch(self, batch):
|
| 541 |
+
"""Train the parameters given a single batch in input"""
|
| 542 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
| 543 |
+
# Managing automatic mixed precision
|
| 544 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
| 545 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
| 546 |
+
if self.auto_mix_prec:
|
| 547 |
+
with torch.cuda.amp.autocast():
|
| 548 |
+
with self.no_sync():
|
| 549 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 550 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 551 |
+
with self.no_sync(not should_step):
|
| 552 |
+
self.scaler.scale(
|
| 553 |
+
loss / self.grad_accumulation_factor
|
| 554 |
+
).backward()
|
| 555 |
+
if should_step:
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
self.scaler.unscale_(self.model_optimizer)
|
| 559 |
+
if self.check_gradients(loss):
|
| 560 |
+
self.scaler.step(self.model_optimizer)
|
| 561 |
+
self.scaler.update()
|
| 562 |
+
self.zero_grad()
|
| 563 |
+
self.optimizer_step += 1
|
| 564 |
+
else:
|
| 565 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
| 566 |
+
# on the forward pass
|
| 567 |
+
with self.no_sync():
|
| 568 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 569 |
+
|
| 570 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 571 |
+
|
| 572 |
+
with self.no_sync(not should_step):
|
| 573 |
+
(loss / self.grad_accumulation_factor).backward()
|
| 574 |
+
if should_step:
|
| 575 |
+
if self.check_gradients(loss):
|
| 576 |
+
self.model_optimizer.step()
|
| 577 |
+
self.zero_grad()
|
| 578 |
+
self.optimizer_step += 1
|
| 579 |
+
|
| 580 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
| 581 |
+
return loss.detach().cpu()
|
| 582 |
+
|
| 583 |
+
def evaluate_batch(self, batch, stage):
|
| 584 |
+
"""Computations needed for validation/test batches"""
|
| 585 |
+
predictions = self.compute_forward(batch, stage=stage)
|
| 586 |
+
with torch.no_grad():
|
| 587 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
| 588 |
+
return loss.detach()
|
| 589 |
+
|
| 590 |
+
def on_stage_start(self, stage, epoch):
|
| 591 |
+
"""Gets called at the beginning of each epoch"""
|
| 592 |
+
if stage != sb.Stage.TRAIN:
|
| 593 |
+
self.cer_metric = self.hparams.cer_computer()
|
| 594 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
| 595 |
+
|
| 596 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
| 597 |
+
"""Gets called at the end of an epoch."""
|
| 598 |
+
# Compute/store important stats
|
| 599 |
+
stage_stats = {"loss": stage_loss}
|
| 600 |
+
if stage == sb.Stage.TRAIN:
|
| 601 |
+
self.train_stats = stage_stats
|
| 602 |
+
else:
|
| 603 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
| 604 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
| 605 |
+
|
| 606 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
| 607 |
+
if stage == sb.Stage.VALID:
|
| 608 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
| 609 |
+
stage_stats["loss"]
|
| 610 |
+
)
|
| 611 |
+
sb.nnet.schedulers.update_learning_rate(
|
| 612 |
+
self.model_optimizer, new_lr_model
|
| 613 |
+
)
|
| 614 |
+
self.hparams.train_logger.log_stats(
|
| 615 |
+
stats_meta={
|
| 616 |
+
"epoch": epoch,
|
| 617 |
+
"lr_model": old_lr_model,
|
| 618 |
+
},
|
| 619 |
+
train_stats=self.train_stats,
|
| 620 |
+
valid_stats=stage_stats,
|
| 621 |
+
)
|
| 622 |
+
self.checkpointer.save_and_keep_only(
|
| 623 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
| 624 |
+
)
|
| 625 |
+
elif stage == sb.Stage.TEST:
|
| 626 |
+
self.hparams.train_logger.log_stats(
|
| 627 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
| 628 |
+
test_stats=stage_stats,
|
| 629 |
+
)
|
| 630 |
+
with open(self.hparams.wer_file, "w") as w:
|
| 631 |
+
self.wer_metric.write_stats(w)
|
| 632 |
+
|
| 633 |
+
def init_optimizers(self):
|
| 634 |
+
|
| 635 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
| 636 |
+
self.hparams.model.parameters()
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
if self.checkpointer is not None:
|
| 640 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
| 641 |
+
|
| 642 |
+
def zero_grad(self, set_to_none=False):
|
| 643 |
+
|
| 644 |
+
self.model_optimizer.zero_grad(set_to_none)
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(["cs.yaml"])
|
| 650 |
+
|
| 651 |
+
# If distributed_launch=True then
|
| 652 |
+
# create ddp_group with the right communication protocol
|
| 653 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
| 654 |
+
|
| 655 |
+
with open(hparams_file) as fin:
|
| 656 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
| 657 |
+
|
| 658 |
+
# Create experiment directory
|
| 659 |
+
sb.create_experiment_directory(
|
| 660 |
+
experiment_directory=hparams["output_folder"],
|
| 661 |
+
hyperparams_to_save=hparams_file,
|
| 662 |
+
overrides=overrides,
|
| 663 |
+
)
|
| 664 |
+
def read_labels_file(labels_file):
|
| 665 |
+
with open(labels_file, "r",encoding="utf-8") as lf:
|
| 666 |
+
lines = lf.read().splitlines()
|
| 667 |
+
division = "==="
|
| 668 |
+
numbers = {}
|
| 669 |
+
for line in lines :
|
| 670 |
+
if division in line :
|
| 671 |
+
break
|
| 672 |
+
string, number = line.split("=>")
|
| 673 |
+
number = int(number)
|
| 674 |
+
string = string[1:-2]
|
| 675 |
+
numbers[number] = string
|
| 676 |
+
return [numbers[x] for x in range(len(numbers))]
|
| 677 |
+
|
| 678 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
| 679 |
+
|
| 680 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
| 681 |
+
special_labels = {
|
| 682 |
+
"blank_label": hparams["blank_index"],
|
| 683 |
+
"unk_label": hparams["unk_index"]
|
| 684 |
+
}
|
| 685 |
+
label_encoder.load_or_create(
|
| 686 |
+
path=lab_enc_file,
|
| 687 |
+
from_didatasets=[[]],
|
| 688 |
+
output_key="char_list",
|
| 689 |
+
special_labels=special_labels,
|
| 690 |
+
sequence_input=True,
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
|
| 695 |
+
labels = [""] + labels[1:-1] + ["1"]
|
| 696 |
+
if hparams["language_modelling"]:
|
| 697 |
+
decoder = build_ctcdecoder(
|
| 698 |
+
labels,
|
| 699 |
+
kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file
|
| 700 |
+
alpha=0.5, # tuned on a val set
|
| 701 |
+
beta=1, # tuned on a val set
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
run_opts["device"]="cpu"
|
| 707 |
+
|
| 708 |
+
mixer = Mixer(
|
| 709 |
+
modules=hparams["modules"],
|
| 710 |
+
hparams=hparams,
|
| 711 |
+
run_opts=run_opts,
|
| 712 |
+
checkpointer=hparams["checkpointer"],
|
| 713 |
+
)
|
| 714 |
+
mixer.tokenizer = label_encoder
|
| 715 |
+
mixer.device = "cpu"
|
| 716 |
+
mixer.checkpointer.recover_if_possible()
|
| 717 |
+
mixer.modules.eval()
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
# We dynamicaly add the tokenizer to our brain class.
|
| 724 |
+
# NB: This tokenizer corresponds to the one used for the LM!!
|
| 725 |
+
|
| 726 |
+
decoder = build_ctcdecoder(
|
| 727 |
+
labels,
|
| 728 |
+
kenlm_model_path= "arpas/everything.arpa", # either .arpa or .bin file
|
| 729 |
+
alpha=0.5, # tuned on a val set
|
| 730 |
+
beta=1, # tuned on a val set
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
device = "cpu"
|
| 736 |
+
mixer.device= "cpu"
|
| 737 |
+
mixer.modules.to("cpu")
|
| 738 |
+
|
| 739 |
+
from enum import Enum, auto
|
| 740 |
+
class Stage(Enum):
|
| 741 |
+
TRAIN = auto()
|
| 742 |
+
VALID = auto()
|
| 743 |
+
TEST = auto()
|
| 744 |
+
|
| 745 |
+
asr_brain.on_evaluate_start()
|
| 746 |
+
asr_brain.modules.eval()
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
import gradio as gr
|
| 750 |
+
|
| 751 |
+
def treat_wav_file(file_mic,file_upload ,asr=mixer, device="cpu") :
|
| 752 |
+
if (file_mic is not None) and (file_upload is not None):
|
| 753 |
+
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
| 754 |
+
wav = file_mic
|
| 755 |
+
elif (file_mic is None) and (file_upload is None):
|
| 756 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
| 757 |
+
elif file_mic is not None:
|
| 758 |
+
wav = file_mic
|
| 759 |
+
else:
|
| 760 |
+
wav = file_upload
|
| 761 |
+
sig, sr = torchaudio.load(wav)
|
| 762 |
+
tensor_wav = sig.to(device)
|
| 763 |
+
resampled = torchaudio.functional.resample( tensor_wav, sr, 16000)
|
| 764 |
+
sentence = asr.treat_wav(resampled)
|
| 765 |
+
return sentence
|
| 766 |
+
|
| 767 |
+
gr.Interface(
|
| 768 |
+
fn=treat_wav_file,
|
| 769 |
+
inputs=[gr.Audio(source="microphone", type='filepath', label = "record", optional = True),
|
| 770 |
+
gr.Audio(source="upload", type='filepath', label="filein", optional=True)]
|
| 771 |
+
,outputs="text").launch()
|
| 772 |
+
|
TunisianASR/results/14epoch_tunisian/1234/env.log
CHANGED
|
@@ -5,343 +5,475 @@ Python version:
|
|
| 5 |
[GCC 7.3.0]
|
| 6 |
==============================
|
| 7 |
Installed Python packages:
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
aiosignal==1.2.0
|
| 11 |
alabaster==0.7.12
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
antlr4-python3-runtime==4.9.3
|
|
|
|
| 16 |
appdirs==1.4.4
|
| 17 |
-
|
| 18 |
-
argon2-cffi
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 22 |
async-generator==1.10
|
| 23 |
-
async-timeout==4.0.
|
| 24 |
-
|
| 25 |
-
attrs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
audioread==2.1.9
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
backcall==0.2.0
|
| 30 |
-
backports.
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
black==22.12.0
|
| 38 |
-
bleach @ file:///tmp/build/80754af9/bleach_1600439572647/work
|
| 39 |
-
bokeh @ file:///tmp/build/80754af9/bokeh_1603297833684/work
|
| 40 |
-
boto==2.49.0
|
| 41 |
-
boto3==1.28.43
|
| 42 |
-
botocore==1.31.43
|
| 43 |
-
Bottleneck==1.3.2
|
| 44 |
bpemb==0.3.4
|
| 45 |
-
|
| 46 |
-
cachetools==
|
| 47 |
-
certifi
|
| 48 |
-
cffi
|
|
|
|
| 49 |
chardet==3.0.4
|
| 50 |
-
charset-normalizer==2.0.
|
| 51 |
-
click==
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
conllu==4.5.3
|
| 61 |
-
|
| 62 |
-
cryptography
|
|
|
|
|
|
|
| 63 |
cycler==0.10.0
|
| 64 |
-
Cython
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
datasets==1.18.3
|
| 68 |
decorator==4.4.2
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
Deprecated==1.2.14
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
docutils==0.16
|
|
|
|
|
|
|
|
|
|
| 75 |
easyocr==1.2.1
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
entrypoints==0.3
|
| 78 |
-
et-xmlfile==1.0
|
|
|
|
| 79 |
farasapy==0.0.14
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
ffmpeg-python==0.2.0
|
|
|
|
| 82 |
filelock==3.0.12
|
| 83 |
flair==0.12.2
|
| 84 |
-
flake8
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
frozenlist==1.
|
| 88 |
-
fsspec==
|
| 89 |
ftfy==6.1.1
|
| 90 |
future==0.18.2
|
|
|
|
|
|
|
| 91 |
gdown==4.4.0
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
google-
|
| 97 |
-
google-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
h5py==2.10.0
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
hyperopt==0.2.7
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
imagesize==1.2.0
|
| 109 |
-
|
| 110 |
-
importlib-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
ipython @ file:///tmp/build/80754af9/ipython_1604101197014/work
|
| 118 |
ipython-genutils==0.2.0
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
| 122 |
Janome==0.5.0
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
Jinja2==
|
| 127 |
-
jiwer==2.
|
| 128 |
-
jmespath==
|
| 129 |
-
joblib
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
jupyter==1.
|
| 133 |
-
jupyter-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
| 141 |
langdetect==1.0.9
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
librosa==0.9.
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
mccabe==0.6.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
mido==1.2.10
|
| 153 |
mistune==0.8.4
|
| 154 |
-
|
| 155 |
-
mkl-random==1.1.1
|
| 156 |
-
mkl-service==2.3.0
|
| 157 |
-
mock==4.0.2
|
| 158 |
-
more-itertools @ file:///tmp/build/80754af9/more-itertools_1605111547926/work
|
| 159 |
mpld3==0.3
|
| 160 |
-
mpmath==1.1
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
opencv-python==4.4.0.46
|
| 185 |
-
openpyxl
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
pathtools==0.1.2
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
pexpect==4.8.0
|
|
|
|
| 198 |
pickleshare==0.7.5
|
| 199 |
-
Pillow
|
| 200 |
-
|
| 201 |
-
|
| 202 |
pluggy==0.13.1
|
| 203 |
-
|
| 204 |
-
|
| 205 |
pptree==3.1
|
|
|
|
|
|
|
| 206 |
pretty-midi==0.2.9
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
ptyprocess==0.6.0
|
| 212 |
-
py
|
| 213 |
py-espeak-ng==0.1.8
|
| 214 |
py4j==0.10.9.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
PyArabic==0.6.15
|
| 216 |
-
pyarrow==
|
| 217 |
pyasn1==0.4.8
|
| 218 |
pyasn1-modules==0.2.8
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
pyDeprecate==0.3.1
|
| 224 |
-
|
| 225 |
-
pyflakes==2.
|
| 226 |
-
Pygments
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
pyparsing==2.4.7
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
| 232 |
PySocks==1.7.1
|
| 233 |
-
|
|
|
|
|
|
|
| 234 |
python-bidi==0.4.2
|
| 235 |
python-crfsuite==0.9.7
|
| 236 |
-
python-dateutil==2.8.
|
| 237 |
-
python-
|
| 238 |
-
python-language-server @ file:///tmp/build/80754af9/python-language-server_1600454544709/work
|
| 239 |
python-Levenshtein==0.12.2
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
| 241 |
pytorch-revgrad==0.2.0
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
PyYAML==
|
| 246 |
-
pyzmq==
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
requests @ file:///tmp/build/80754af9/requests_1592841827918/work
|
| 253 |
-
requests-oauthlib==1.3.1
|
| 254 |
resampy==0.2.2
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
segtok==1.5.11
|
|
|
|
|
|
|
| 268 |
Send2Trash==1.5.0
|
| 269 |
-
sentencepiece==0.1.
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
snowballstemmer==2.0.0
|
| 276 |
-
sortedcollections==
|
| 277 |
-
sortedcontainers==2.
|
|
|
|
| 278 |
SoundFile==0.10.3.post1
|
| 279 |
-
soupsieve==2.
|
|
|
|
|
|
|
|
|
|
| 280 |
sphfile==1.0.3
|
| 281 |
-
Sphinx
|
|
|
|
| 282 |
sphinxcontrib-applehelp==1.0.2
|
|
|
|
| 283 |
sphinxcontrib-devhelp==1.0.2
|
| 284 |
sphinxcontrib-htmlhelp==1.0.3
|
| 285 |
sphinxcontrib-jsmath==1.0.1
|
| 286 |
sphinxcontrib-qthelp==1.0.3
|
| 287 |
sphinxcontrib-serializinghtml==1.1.4
|
| 288 |
-
|
| 289 |
-
spyder @ file:///tmp/build/80754af9/spyder_1599056981321/work
|
| 290 |
-
spyder-kernels @ file:///tmp/build/80754af9/spyder-kernels_1599056754858/work
|
| 291 |
-
SQLAlchemy @ file:///tmp/build/80754af9/sqlalchemy_1603397987316/work
|
| 292 |
sqlitedict==2.1.0
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
testpath==0.4.4
|
| 303 |
-
threadpoolctl
|
| 304 |
-
tifffile==2020.
|
|
|
|
|
|
|
| 305 |
tkseem==0.0.3
|
| 306 |
tokenizers==0.13.3
|
| 307 |
-
toml
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
torch==
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
| 317 |
transformer-smaller-training-vocab==0.3.1
|
| 318 |
-
transformers==4.
|
|
|
|
|
|
|
|
|
|
| 319 |
typing-extensions==4.4.0
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
webencodings==0.5.1
|
|
|
|
|
|
|
| 326 |
Werkzeug==1.0.1
|
|
|
|
| 327 |
widgetsnbextension==3.5.1
|
| 328 |
Wikipedia-API==0.6.0
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
xxhash==3.0.0
|
| 336 |
-
yapf @ file:///tmp/build/80754af9/yapf_1593528177422/work
|
| 337 |
yarl==1.7.2
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
==============================
|
| 343 |
Git revision:
|
| 344 |
-
|
| 345 |
==============================
|
| 346 |
CUDA version:
|
| 347 |
11.7
|
|
|
|
| 5 |
[GCC 7.3.0]
|
| 6 |
==============================
|
| 7 |
Installed Python packages:
|
| 8 |
+
abkhazia==1.0
|
| 9 |
+
absl-py==0.11.0
|
| 10 |
+
aiofiles==23.2.1
|
| 11 |
+
aiohttp==3.8.0
|
| 12 |
aiosignal==1.2.0
|
| 13 |
alabaster==0.7.12
|
| 14 |
+
alembic==1.7.4
|
| 15 |
+
altair==4.2.0
|
| 16 |
+
altgraph==0.17
|
| 17 |
antlr4-python3-runtime==4.9.3
|
| 18 |
+
anyio==3.6.2
|
| 19 |
appdirs==1.4.4
|
| 20 |
+
argcomplete==1.12.2
|
| 21 |
+
argon2-cffi==20.1.0
|
| 22 |
+
arrow==1.2.3
|
| 23 |
+
asgiref==3.6.0
|
| 24 |
+
asteroid-filterbanks==0.4.0
|
| 25 |
+
astunparse==1.6.3
|
| 26 |
async-generator==1.10
|
| 27 |
+
async-timeout==4.0.0
|
| 28 |
+
attrdict==2.0.1
|
| 29 |
+
attrs==20.3.0
|
| 30 |
+
audeer==1.16.0
|
| 31 |
+
audformat==0.11.5
|
| 32 |
+
audinterface==0.7.0
|
| 33 |
+
audiofile==1.0.0
|
| 34 |
+
audiomentations==0.25.0
|
| 35 |
audioread==2.1.9
|
| 36 |
+
audobject==0.4.14
|
| 37 |
+
audresample==0.1.6
|
| 38 |
+
-e git+https://github.com/facebookresearch/WavAugment.git@54afcdb00ccc852c2f030f239f8532c9562b550e#egg=augment
|
| 39 |
+
autopage==0.4.0
|
| 40 |
+
Babel==2.9.0
|
| 41 |
backcall==0.2.0
|
| 42 |
+
backports.cached-property==1.0.2
|
| 43 |
+
beautifulsoup4==4.10.0
|
| 44 |
+
black==19.10b0
|
| 45 |
+
bleach==3.3.0
|
| 46 |
+
blessed==1.20.0
|
| 47 |
+
boto3==1.20.2
|
| 48 |
+
botocore==1.23.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
bpemb==0.3.4
|
| 50 |
+
braceexpand==0.1.7
|
| 51 |
+
cachetools==4.2.0
|
| 52 |
+
certifi @ file:///croot/certifi_1671487769961/work/certifi
|
| 53 |
+
cffi==1.14.3
|
| 54 |
+
cfgv==3.2.0
|
| 55 |
chardet==3.0.4
|
| 56 |
+
charset-normalizer==2.0.7
|
| 57 |
+
click==7.1.2
|
| 58 |
+
cliff==3.9.0
|
| 59 |
+
clldutils==3.5.4
|
| 60 |
+
cloudpickle==2.2.1
|
| 61 |
+
cmaes==0.8.2
|
| 62 |
+
cmake==3.18.4.post1
|
| 63 |
+
cmd2==2.2.0
|
| 64 |
+
colorama==0.4.4
|
| 65 |
+
colorlog==4.6.2
|
| 66 |
+
configparser==5.1.0
|
| 67 |
conllu==4.5.3
|
| 68 |
+
croniter==1.3.15
|
| 69 |
+
cryptography==38.0.4
|
| 70 |
+
csrgraph==0.1.28
|
| 71 |
+
csvw==1.8.1
|
| 72 |
cycler==0.10.0
|
| 73 |
+
Cython==0.29.21
|
| 74 |
+
dataclasses==0.6
|
| 75 |
+
dateutils==0.6.12
|
|
|
|
| 76 |
decorator==4.4.2
|
| 77 |
+
deepdiff==6.3.0
|
| 78 |
+
deepspeech==0.9.1
|
| 79 |
+
defusedxml==0.7.1
|
| 80 |
Deprecated==1.2.14
|
| 81 |
+
dill==0.3.3
|
| 82 |
+
Distance==0.1.3
|
| 83 |
+
distlib==0.3.1
|
| 84 |
+
Django==3.2.16
|
| 85 |
+
django-auditlog==2.2.1
|
| 86 |
+
django-filter==22.1
|
| 87 |
+
django-js-asset==1.2.2
|
| 88 |
+
django-mptt==0.14.0
|
| 89 |
+
djangorestframework==3.14.0
|
| 90 |
+
docker-pycreds==0.4.0
|
| 91 |
+
docopt==0.6.2
|
| 92 |
docutils==0.16
|
| 93 |
+
drf-excel==2.2.0
|
| 94 |
+
drf-flex-fields==1.0.0
|
| 95 |
+
drf-renderer-xlsx==0.4.1
|
| 96 |
easyocr==1.2.1
|
| 97 |
+
editdistance==0.6.0
|
| 98 |
+
einops==0.3.2
|
| 99 |
+
emoji==2.2.0
|
| 100 |
entrypoints==0.3
|
| 101 |
+
et-xmlfile==1.1.0
|
| 102 |
+
exceptiongroup==1.1.0
|
| 103 |
farasapy==0.0.14
|
| 104 |
+
fastapi==0.98.0
|
| 105 |
+
fastjsonschema==2.17.1
|
| 106 |
+
fasttext==0.9.2
|
| 107 |
ffmpeg-python==0.2.0
|
| 108 |
+
ffmpy==0.3.0
|
| 109 |
filelock==3.0.12
|
| 110 |
flair==0.12.2
|
| 111 |
+
flake8==3.7.9
|
| 112 |
+
flatbuffers==1.12
|
| 113 |
+
frozendict==2.0.7
|
| 114 |
+
frozenlist==1.2.0
|
| 115 |
+
fsspec==2021.11.0
|
| 116 |
ftfy==6.1.1
|
| 117 |
future==0.18.2
|
| 118 |
+
g2p-en==2.1.0
|
| 119 |
+
gast==0.3.3
|
| 120 |
gdown==4.4.0
|
| 121 |
+
gdrive==0.1.5
|
| 122 |
+
gensim==4.0.1
|
| 123 |
+
gitdb==4.0.9
|
| 124 |
+
GitPython==3.1.24
|
| 125 |
+
google-api-core==2.11.1
|
| 126 |
+
google-api-python-client==2.43.0
|
| 127 |
+
google-auth==1.24.0
|
| 128 |
+
google-auth-httplib2==0.1.0
|
| 129 |
+
google-auth-oauthlib==0.5.3
|
| 130 |
+
google-pasta==0.2.0
|
| 131 |
+
googleapis-common-protos==1.59.1
|
| 132 |
+
gradio==3.44.4
|
| 133 |
+
gradio-client==0.5.1
|
| 134 |
+
greenlet==1.1.2
|
| 135 |
+
grpcio==1.32.0
|
| 136 |
+
h11==0.14.0
|
| 137 |
+
h5features==1.3.2
|
| 138 |
h5py==2.10.0
|
| 139 |
+
hierarchy==0.4.0
|
| 140 |
+
hmmlearn==0.2.8
|
| 141 |
+
htk-io==0.5
|
| 142 |
+
httpcore==0.16.3
|
| 143 |
+
httplib2==0.22.0
|
| 144 |
+
httpx==0.23.3
|
| 145 |
+
huggingface-hub==0.15.1
|
| 146 |
+
hydra-colorlog==0.1.4
|
| 147 |
+
hydra-core==1.3.2
|
| 148 |
hyperopt==0.2.7
|
| 149 |
+
HyperPyYAML==1.1.0
|
| 150 |
+
hypothesis==6.61.2
|
| 151 |
+
identify==1.5.10
|
| 152 |
+
idna==2.10
|
| 153 |
+
imageio==2.9.0
|
| 154 |
imagesize==1.2.0
|
| 155 |
+
importlib-metadata==4.8.1
|
| 156 |
+
importlib-resources==5.2.2
|
| 157 |
+
inflect==5.3.0
|
| 158 |
+
inquirer==3.1.3
|
| 159 |
+
ipadic==1.0.0
|
| 160 |
+
ipyevents==2.0.1
|
| 161 |
+
ipykernel==5.3.4
|
| 162 |
+
ipython==7.19.0
|
|
|
|
| 163 |
ipython-genutils==0.2.0
|
| 164 |
+
ipywebrtc==0.6.0
|
| 165 |
+
ipywidgets==7.6.3
|
| 166 |
+
iso-639==0.4.5
|
| 167 |
+
isodate==0.6.0
|
| 168 |
+
isort==4.3.21
|
| 169 |
+
itsdangerous==2.1.2
|
| 170 |
Janome==0.5.0
|
| 171 |
+
jedi==0.17.2
|
| 172 |
+
jeepney==0.8.0
|
| 173 |
+
jieba==0.42.1
|
| 174 |
+
Jinja2==3.0.3
|
| 175 |
+
jiwer==2.2.0
|
| 176 |
+
jmespath==0.10.0
|
| 177 |
+
joblib==0.17.0
|
| 178 |
+
jsonschema==3.2.0
|
| 179 |
+
julius==0.2.7
|
| 180 |
+
jupyter-client==6.1.7
|
| 181 |
+
jupyter-core==4.7.0
|
| 182 |
+
jupyterlab-pygments==0.1.2
|
| 183 |
+
jupyterlab-widgets==1.0.0
|
| 184 |
+
kaitaistruct==0.9
|
| 185 |
+
kaldi-io==0.9.4
|
| 186 |
+
kaldi-python-io==1.2.2
|
| 187 |
+
kaldiio==2.17.2
|
| 188 |
+
kenlm @ https://github.com/kpu/kenlm/archive/master.zip
|
| 189 |
+
Keras-Preprocessing==1.1.2
|
| 190 |
+
kiwisolver==1.3.1
|
| 191 |
+
lang-trans==0.6.0
|
| 192 |
langdetect==1.0.9
|
| 193 |
+
latexcodec==2.0.1
|
| 194 |
+
ldap3==2.9.1
|
| 195 |
+
librosa==0.9.0
|
| 196 |
+
lightning-cloud==0.5.37
|
| 197 |
+
lightning-utilities==0.8.0
|
| 198 |
+
linkify-it-py==1.0.3
|
| 199 |
+
lit==16.0.6
|
| 200 |
+
llvmlite==0.35.0
|
| 201 |
+
lxml==4.9.0
|
| 202 |
+
Mako==1.1.5
|
| 203 |
+
Markdown==3.3.3
|
| 204 |
+
markdown-it-py==3.0.0
|
| 205 |
+
MarkupSafe==2.1.3
|
| 206 |
+
marshmallow==3.14.0
|
| 207 |
+
matplotlib==3.3.3
|
| 208 |
mccabe==0.6.1
|
| 209 |
+
mcd==0.4
|
| 210 |
+
mdit-py-plugins==0.3.3
|
| 211 |
+
mdurl==0.1.2
|
| 212 |
+
mecab-python3==1.0.3
|
| 213 |
+
megatron-lm==2.2.0
|
| 214 |
+
metrics==0.3.3
|
| 215 |
mido==1.2.10
|
| 216 |
mistune==0.8.4
|
| 217 |
+
more-itertools==8.6.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
mpld3==0.3
|
| 219 |
+
mpmath==1.2.1
|
| 220 |
+
multidict==5.2.0
|
| 221 |
+
multiprocess==0.70.11.1
|
| 222 |
+
nbclient==0.5.3
|
| 223 |
+
nbconvert==5.6.1
|
| 224 |
+
nbformat==5.9.0
|
| 225 |
+
NEMO==4.3.2
|
| 226 |
+
nemo-toolkit==1.4.0
|
| 227 |
+
nest-asyncio==1.5.1
|
| 228 |
+
networkx==2.8.8
|
| 229 |
+
nltk==3.2.4
|
| 230 |
+
nodeenv==1.5.0
|
| 231 |
+
normalize==2.0.2
|
| 232 |
+
notebook==6.3.0
|
| 233 |
+
numba==0.52.0
|
| 234 |
+
numpy==1.19.4
|
| 235 |
+
nvidia-cublas-cu11==11.10.3.66
|
| 236 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
| 237 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
| 238 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
| 239 |
+
nvidia-cudnn-cu11==8.5.0.96
|
| 240 |
+
nvidia-cufft-cu11==10.9.0.58
|
| 241 |
+
nvidia-curand-cu11==10.2.10.91
|
| 242 |
+
nvidia-cusolver-cu11==11.4.0.1
|
| 243 |
+
nvidia-cusparse-cu11==11.7.4.91
|
| 244 |
+
nvidia-nccl-cu11==2.14.3
|
| 245 |
+
nvidia-nvtx-cu11==11.7.91
|
| 246 |
+
oauthlib==3.1.0
|
| 247 |
+
omegaconf==2.3.0
|
| 248 |
+
onnx==1.10.2
|
| 249 |
+
OpenCC==1.1.2
|
| 250 |
opencv-python==4.4.0.46
|
| 251 |
+
openpyxl==3.0.9
|
| 252 |
+
opensmile==2.2.0
|
| 253 |
+
opt-einsum==3.3.0
|
| 254 |
+
optuna==2.10.0
|
| 255 |
+
ordered-set==4.1.0
|
| 256 |
+
orjson==3.8.4
|
| 257 |
+
oyaml==1.0
|
| 258 |
+
packaging==22.0
|
| 259 |
+
pandas==1.2.5
|
| 260 |
+
pandocfilters==1.4.3
|
| 261 |
+
pangu==4.0.6.1
|
| 262 |
+
parameterized==0.8.1
|
| 263 |
+
parso==0.7.1
|
| 264 |
+
pathlib2==2.3.7.post1
|
| 265 |
+
pathspec==0.5.5
|
| 266 |
pathtools==0.1.2
|
| 267 |
+
pbr==5.6.0
|
| 268 |
+
pefile==2019.4.18
|
| 269 |
+
pescador==2.1.0
|
| 270 |
+
pesq==0.0.3
|
| 271 |
pexpect==4.8.0
|
| 272 |
+
phonemizer==2.2.1
|
| 273 |
pickleshare==0.7.5
|
| 274 |
+
Pillow==9.3.0
|
| 275 |
+
pip-api==0.0.23
|
| 276 |
+
pipreqs==0.4.11
|
| 277 |
pluggy==0.13.1
|
| 278 |
+
pooch==1.3.0
|
| 279 |
+
portalocker==2.3.2
|
| 280 |
pptree==3.1
|
| 281 |
+
pre-commit==2.9.0
|
| 282 |
+
preprocessing==0.1.13
|
| 283 |
pretty-midi==0.2.9
|
| 284 |
+
prettytable==2.2.1
|
| 285 |
+
primePy==1.3
|
| 286 |
+
progressbar2==3.53.1
|
| 287 |
+
prometheus-client==0.10.1
|
| 288 |
+
promise==2.3
|
| 289 |
+
prompt-toolkit==3.0.8
|
| 290 |
+
protobuf==3.20.3
|
| 291 |
+
psutil==5.6.6
|
| 292 |
ptyprocess==0.6.0
|
| 293 |
+
py==1.9.0
|
| 294 |
py-espeak-ng==0.1.8
|
| 295 |
py4j==0.10.9.7
|
| 296 |
+
pyannote.audio==2.1.1
|
| 297 |
+
pyannote.core==4.5
|
| 298 |
+
pyannote.database==4.1.3
|
| 299 |
+
pyannote.metrics==3.2.1
|
| 300 |
+
pyannote.pipeline==2.3
|
| 301 |
+
pyannotebook==0.1.0.dev0
|
| 302 |
PyArabic==0.6.15
|
| 303 |
+
pyarrow==3.0.0
|
| 304 |
pyasn1==0.4.8
|
| 305 |
pyasn1-modules==0.2.8
|
| 306 |
+
pybind11==2.8.1
|
| 307 |
+
pybtex==0.24.0
|
| 308 |
+
pybtex-docutils==1.0.1
|
| 309 |
+
pycodestyle==2.5.0
|
| 310 |
+
pycparser==2.20
|
| 311 |
+
pycryptodome==3.16.0
|
| 312 |
+
pyctcdecode==0.4.0
|
| 313 |
+
pydantic==1.10.4
|
| 314 |
pyDeprecate==0.3.1
|
| 315 |
+
pydub==0.25.1
|
| 316 |
+
pyflakes==2.1.1
|
| 317 |
+
Pygments==2.15.1
|
| 318 |
+
pygtrie==2.5.0
|
| 319 |
+
PyJWT==2.7.0
|
| 320 |
+
pymodbus==2.5.3
|
| 321 |
pyparsing==2.4.7
|
| 322 |
+
pyperclip==1.8.2
|
| 323 |
+
pypinyin==0.43.0
|
| 324 |
+
pyrsistent==0.17.3
|
| 325 |
+
pyserial==3.5
|
| 326 |
PySocks==1.7.1
|
| 327 |
+
pystoi==0.3.3
|
| 328 |
+
pytest==5.4.1
|
| 329 |
+
pytest-runner==5.3.1
|
| 330 |
python-bidi==0.4.2
|
| 331 |
python-crfsuite==0.9.7
|
| 332 |
+
python-dateutil==2.8.2
|
| 333 |
+
python-editor==1.0.4
|
|
|
|
| 334 |
python-Levenshtein==0.12.2
|
| 335 |
+
python-multipart==0.0.5
|
| 336 |
+
python-utils==2.4.0
|
| 337 |
+
pytorch-lightning==1.6.5
|
| 338 |
+
pytorch-metric-learning==1.7.3
|
| 339 |
pytorch-revgrad==0.2.0
|
| 340 |
+
pytube==11.0.1
|
| 341 |
+
pytz==2022.6
|
| 342 |
+
PyWavelets==1.1.1
|
| 343 |
+
PyYAML==6.0
|
| 344 |
+
pyzmq==20.0.0
|
| 345 |
+
rapidfuzz==1.8.2
|
| 346 |
+
readchar==4.0.5
|
| 347 |
+
regex==2020.11.13
|
| 348 |
+
requests==2.28.1
|
| 349 |
+
requests-oauthlib==1.3.0
|
|
|
|
|
|
|
| 350 |
resampy==0.2.2
|
| 351 |
+
rfc3986==1.4.0
|
| 352 |
+
rich==13.4.2
|
| 353 |
+
richenum==1.3.1
|
| 354 |
+
rsa==4.7
|
| 355 |
+
ruamel.yaml==0.17.21
|
| 356 |
+
ruamel.yaml.clib==0.2.7
|
| 357 |
+
s3m==1.1.0
|
| 358 |
+
s3transfer==0.5.0
|
| 359 |
+
sacrebleu==2.0.0
|
| 360 |
+
sacremoses==0.0.44
|
| 361 |
+
safetensors==0.3.1
|
| 362 |
+
scikit-image==0.18.1
|
| 363 |
+
scikit-learn==0.23.2
|
| 364 |
+
scipy==1.5.4
|
| 365 |
+
-e git+https://github.com/sanghack81/SDCIT@00d060dde733fde9345154a494f81e97fb395ca7#egg=SDCIT
|
| 366 |
+
seaborn==0.11.1
|
| 367 |
+
SecretStorage==3.3.3
|
| 368 |
+
segments==2.1.3
|
| 369 |
segtok==1.5.11
|
| 370 |
+
semantic-version==2.10.0
|
| 371 |
+
semver==2.13.0
|
| 372 |
Send2Trash==1.5.0
|
| 373 |
+
sentencepiece==0.1.99
|
| 374 |
+
sentry-sdk==1.4.3
|
| 375 |
+
shellingham==1.4.0
|
| 376 |
+
shortuuid==1.0.7
|
| 377 |
+
SIDEKIT==1.3.8.5.2
|
| 378 |
+
simplejson==3.17.5
|
| 379 |
+
singledispatchmethod==1.0
|
| 380 |
+
six==1.15.0
|
| 381 |
+
smart-open==5.0.0
|
| 382 |
+
smmap==5.0.0
|
| 383 |
+
sniffio==1.3.0
|
| 384 |
snowballstemmer==2.0.0
|
| 385 |
+
sortedcollections==2.1.0
|
| 386 |
+
sortedcontainers==2.4.0
|
| 387 |
+
sounddevice==0.4.5
|
| 388 |
SoundFile==0.10.3.post1
|
| 389 |
+
soupsieve==2.3
|
| 390 |
+
sox==1.4.1
|
| 391 |
+
sparsemax==0.1.9
|
| 392 |
+
speechbrain==0.5.14
|
| 393 |
sphfile==1.0.3
|
| 394 |
+
Sphinx==3.3.1
|
| 395 |
+
sphinx-rtd-theme==0.2.4
|
| 396 |
sphinxcontrib-applehelp==1.0.2
|
| 397 |
+
sphinxcontrib-bibtex==2.4.1
|
| 398 |
sphinxcontrib-devhelp==1.0.2
|
| 399 |
sphinxcontrib-htmlhelp==1.0.3
|
| 400 |
sphinxcontrib-jsmath==1.0.1
|
| 401 |
sphinxcontrib-qthelp==1.0.3
|
| 402 |
sphinxcontrib-serializinghtml==1.1.4
|
| 403 |
+
SQLAlchemy==1.4.25
|
|
|
|
|
|
|
|
|
|
| 404 |
sqlitedict==2.1.0
|
| 405 |
+
sqlparse==0.4.2
|
| 406 |
+
stanza==1.4.2
|
| 407 |
+
starlette==0.27.0
|
| 408 |
+
starsessions==1.3.0
|
| 409 |
+
stevedore==3.4.0
|
| 410 |
+
subprocess32==3.5.4
|
| 411 |
+
sympy==1.9
|
| 412 |
+
tabulate==0.8.9
|
| 413 |
+
tensorboard==2.4.0
|
| 414 |
+
tensorboard-plugin-wit==1.7.0
|
| 415 |
+
tensorboardX==2.6.1
|
| 416 |
+
tensorflow==2.4.0
|
| 417 |
+
tensorflow-estimator==2.4.0
|
| 418 |
+
termcolor==1.1.0
|
| 419 |
+
terminado==0.9.4
|
| 420 |
testpath==0.4.4
|
| 421 |
+
threadpoolctl==2.1.0
|
| 422 |
+
tifffile==2020.12.8
|
| 423 |
+
tikzplotlib==0.9.8
|
| 424 |
+
tinycss2==1.2.1
|
| 425 |
tkseem==0.0.3
|
| 426 |
tokenizers==0.13.3
|
| 427 |
+
toml==0.10.2
|
| 428 |
+
toolz==0.12.0
|
| 429 |
+
torch==1.13.1
|
| 430 |
+
torch-audiomentations==0.11.0
|
| 431 |
+
torch-pitch-shift==1.2.4
|
| 432 |
+
torch-stft==0.1.4
|
| 433 |
+
torchaudio==0.13.1
|
| 434 |
+
torchmetrics==0.11.4
|
| 435 |
+
torchvision==0.14.1
|
| 436 |
+
tornado==6.1
|
| 437 |
+
tqdm==4.61.1
|
| 438 |
+
trackrip==1.2.1
|
| 439 |
+
traitlets==5.9.0
|
| 440 |
transformer-smaller-training-vocab==0.3.1
|
| 441 |
+
transformers==4.30.2
|
| 442 |
+
triton==2.0.0
|
| 443 |
+
typed-ast==1.4.1
|
| 444 |
+
typer==0.4.0
|
| 445 |
typing-extensions==4.4.0
|
| 446 |
+
uc-micro-py==1.0.1
|
| 447 |
+
Unidecode==1.3.2
|
| 448 |
+
uritemplate==3.0.1
|
| 449 |
+
urllib3==1.26.2
|
| 450 |
+
uvicorn==0.20.0
|
| 451 |
+
versioneer==0.28
|
| 452 |
+
virtualenv==20.2.1
|
| 453 |
+
wandb==0.12.6
|
| 454 |
+
wcwidth==0.2.5
|
| 455 |
+
webdataset==0.1.62
|
| 456 |
webencodings==0.5.1
|
| 457 |
+
websocket-client==1.6.1
|
| 458 |
+
websockets==10.4
|
| 459 |
Werkzeug==1.0.1
|
| 460 |
+
wget==3.2
|
| 461 |
widgetsnbextension==3.5.1
|
| 462 |
Wikipedia-API==0.6.0
|
| 463 |
+
wordninja==2.0.0
|
| 464 |
+
wrapt==1.12.1
|
| 465 |
+
xmltodict==0.13.0
|
| 466 |
+
xxhash==2.0.0
|
| 467 |
+
yamllint==1.23.0
|
| 468 |
+
yarg==0.1.9
|
|
|
|
|
|
|
| 469 |
yarl==1.7.2
|
| 470 |
+
yaspin==2.1.0
|
| 471 |
+
youtokentome==1.0.6
|
| 472 |
+
youtube-dl==2021.6.6
|
| 473 |
+
zipp==3.6.0
|
| 474 |
==============================
|
| 475 |
Git revision:
|
| 476 |
+
be9098b
|
| 477 |
==============================
|
| 478 |
CUDA version:
|
| 479 |
11.7
|
TunisianASR/results/14epoch_tunisian/1234/hyperparams.yaml
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
# Generated 2023-09-
|
| 2 |
-
# /home/salah/
|
| 3 |
# yamllint disable
|
| 4 |
# ################################
|
| 5 |
# Model: wav2vec2 + DNN + CTC
|
|
|
|
| 1 |
+
# Generated 2023-09-25 from:
|
| 2 |
+
# /home/salah/Code-Switched-Tunisian-SpeechToText/TunisianASR/semi_trained.yaml
|
| 3 |
# yamllint disable
|
| 4 |
# ################################
|
| 5 |
# Model: wav2vec2 + DNN + CTC
|
TunisianASR/results/14epoch_tunisian/1234/log.txt
CHANGED
|
@@ -357,3 +357,494 @@ zope.interface @ file:///tmp/build/80754af9/zope.interface_1602002420968/work
|
|
| 357 |
2023-09-20 16:24:00,139 - speechbrain.core - INFO - 314.4M trainable parameters in ASR
|
| 358 |
2023-09-20 16:24:00,967 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from TunisianASR/results/14epoch_tunisian/1234/save/CKPT+2023-08-03+01-38-38+00
|
| 359 |
2023-09-20 16:24:49,007 - speechbrain.utils.distributed - INFO - distributed_launch flag is disabled, this experiment will be executed without DDP.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
2023-09-20 16:24:00,139 - speechbrain.core - INFO - 314.4M trainable parameters in ASR
|
| 358 |
2023-09-20 16:24:00,967 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from TunisianASR/results/14epoch_tunisian/1234/save/CKPT+2023-08-03+01-38-38+00
|
| 359 |
2023-09-20 16:24:49,007 - speechbrain.utils.distributed - INFO - distributed_launch flag is disabled, this experiment will be executed without DDP.
|
| 360 |
+
2023-09-25 11:12:54,556 - speechbrain.core - INFO - Beginning experiment!
|
| 361 |
+
2023-09-25 11:12:54,556 - speechbrain.core - INFO - Experiment folder: TunisianASR/results/14epoch_tunisian/1234/
|
| 362 |
+
2023-09-25 11:12:55,141 - speechbrain.utils.superpowers - DEBUG - abkhazia==1.0
|
| 363 |
+
absl-py==0.11.0
|
| 364 |
+
aiofiles==23.2.1
|
| 365 |
+
aiohttp==3.8.0
|
| 366 |
+
aiosignal==1.2.0
|
| 367 |
+
alabaster==0.7.12
|
| 368 |
+
alembic==1.7.4
|
| 369 |
+
altair==4.2.0
|
| 370 |
+
altgraph==0.17
|
| 371 |
+
antlr4-python3-runtime==4.9.3
|
| 372 |
+
anyio==3.6.2
|
| 373 |
+
appdirs==1.4.4
|
| 374 |
+
argcomplete==1.12.2
|
| 375 |
+
argon2-cffi==20.1.0
|
| 376 |
+
arrow==1.2.3
|
| 377 |
+
asgiref==3.6.0
|
| 378 |
+
asteroid-filterbanks==0.4.0
|
| 379 |
+
astunparse==1.6.3
|
| 380 |
+
async-generator==1.10
|
| 381 |
+
async-timeout==4.0.0
|
| 382 |
+
attrdict==2.0.1
|
| 383 |
+
attrs==20.3.0
|
| 384 |
+
audeer==1.16.0
|
| 385 |
+
audformat==0.11.5
|
| 386 |
+
audinterface==0.7.0
|
| 387 |
+
audiofile==1.0.0
|
| 388 |
+
audiomentations==0.25.0
|
| 389 |
+
audioread==2.1.9
|
| 390 |
+
audobject==0.4.14
|
| 391 |
+
audresample==0.1.6
|
| 392 |
+
-e git+https://github.com/facebookresearch/WavAugment.git@54afcdb00ccc852c2f030f239f8532c9562b550e#egg=augment
|
| 393 |
+
autopage==0.4.0
|
| 394 |
+
Babel==2.9.0
|
| 395 |
+
backcall==0.2.0
|
| 396 |
+
backports.cached-property==1.0.2
|
| 397 |
+
beautifulsoup4==4.10.0
|
| 398 |
+
black==19.10b0
|
| 399 |
+
bleach==3.3.0
|
| 400 |
+
blessed==1.20.0
|
| 401 |
+
boto3==1.20.2
|
| 402 |
+
botocore==1.23.2
|
| 403 |
+
bpemb==0.3.4
|
| 404 |
+
braceexpand==0.1.7
|
| 405 |
+
cachetools==4.2.0
|
| 406 |
+
certifi @ file:///croot/certifi_1671487769961/work/certifi
|
| 407 |
+
cffi==1.14.3
|
| 408 |
+
cfgv==3.2.0
|
| 409 |
+
chardet==3.0.4
|
| 410 |
+
charset-normalizer==2.0.7
|
| 411 |
+
click==7.1.2
|
| 412 |
+
cliff==3.9.0
|
| 413 |
+
clldutils==3.5.4
|
| 414 |
+
cloudpickle==2.2.1
|
| 415 |
+
cmaes==0.8.2
|
| 416 |
+
cmake==3.18.4.post1
|
| 417 |
+
cmd2==2.2.0
|
| 418 |
+
colorama==0.4.4
|
| 419 |
+
colorlog==4.6.2
|
| 420 |
+
configparser==5.1.0
|
| 421 |
+
conllu==4.5.3
|
| 422 |
+
croniter==1.3.15
|
| 423 |
+
cryptography==38.0.4
|
| 424 |
+
csrgraph==0.1.28
|
| 425 |
+
csvw==1.8.1
|
| 426 |
+
cycler==0.10.0
|
| 427 |
+
Cython==0.29.21
|
| 428 |
+
dataclasses==0.6
|
| 429 |
+
dateutils==0.6.12
|
| 430 |
+
decorator==4.4.2
|
| 431 |
+
deepdiff==6.3.0
|
| 432 |
+
deepspeech==0.9.1
|
| 433 |
+
defusedxml==0.7.1
|
| 434 |
+
Deprecated==1.2.14
|
| 435 |
+
dill==0.3.3
|
| 436 |
+
Distance==0.1.3
|
| 437 |
+
distlib==0.3.1
|
| 438 |
+
Django==3.2.16
|
| 439 |
+
django-auditlog==2.2.1
|
| 440 |
+
django-filter==22.1
|
| 441 |
+
django-js-asset==1.2.2
|
| 442 |
+
django-mptt==0.14.0
|
| 443 |
+
djangorestframework==3.14.0
|
| 444 |
+
docker-pycreds==0.4.0
|
| 445 |
+
docopt==0.6.2
|
| 446 |
+
docutils==0.16
|
| 447 |
+
drf-excel==2.2.0
|
| 448 |
+
drf-flex-fields==1.0.0
|
| 449 |
+
drf-renderer-xlsx==0.4.1
|
| 450 |
+
easyocr==1.2.1
|
| 451 |
+
editdistance==0.6.0
|
| 452 |
+
einops==0.3.2
|
| 453 |
+
emoji==2.2.0
|
| 454 |
+
entrypoints==0.3
|
| 455 |
+
et-xmlfile==1.1.0
|
| 456 |
+
exceptiongroup==1.1.0
|
| 457 |
+
farasapy==0.0.14
|
| 458 |
+
fastapi==0.98.0
|
| 459 |
+
fastjsonschema==2.17.1
|
| 460 |
+
fasttext==0.9.2
|
| 461 |
+
ffmpeg-python==0.2.0
|
| 462 |
+
ffmpy==0.3.0
|
| 463 |
+
filelock==3.0.12
|
| 464 |
+
flair==0.12.2
|
| 465 |
+
flake8==3.7.9
|
| 466 |
+
flatbuffers==1.12
|
| 467 |
+
frozendict==2.0.7
|
| 468 |
+
frozenlist==1.2.0
|
| 469 |
+
fsspec==2021.11.0
|
| 470 |
+
ftfy==6.1.1
|
| 471 |
+
future==0.18.2
|
| 472 |
+
g2p-en==2.1.0
|
| 473 |
+
gast==0.3.3
|
| 474 |
+
gdown==4.4.0
|
| 475 |
+
gdrive==0.1.5
|
| 476 |
+
gensim==4.0.1
|
| 477 |
+
gitdb==4.0.9
|
| 478 |
+
GitPython==3.1.24
|
| 479 |
+
google-api-core==2.11.1
|
| 480 |
+
google-api-python-client==2.43.0
|
| 481 |
+
google-auth==1.24.0
|
| 482 |
+
google-auth-httplib2==0.1.0
|
| 483 |
+
google-auth-oauthlib==0.5.3
|
| 484 |
+
google-pasta==0.2.0
|
| 485 |
+
googleapis-common-protos==1.59.1
|
| 486 |
+
gradio==3.44.4
|
| 487 |
+
gradio-client==0.5.1
|
| 488 |
+
greenlet==1.1.2
|
| 489 |
+
grpcio==1.32.0
|
| 490 |
+
h11==0.14.0
|
| 491 |
+
h5features==1.3.2
|
| 492 |
+
h5py==2.10.0
|
| 493 |
+
hierarchy==0.4.0
|
| 494 |
+
hmmlearn==0.2.8
|
| 495 |
+
htk-io==0.5
|
| 496 |
+
httpcore==0.16.3
|
| 497 |
+
httplib2==0.22.0
|
| 498 |
+
httpx==0.23.3
|
| 499 |
+
huggingface-hub==0.15.1
|
| 500 |
+
hydra-colorlog==0.1.4
|
| 501 |
+
hydra-core==1.3.2
|
| 502 |
+
hyperopt==0.2.7
|
| 503 |
+
HyperPyYAML==1.1.0
|
| 504 |
+
hypothesis==6.61.2
|
| 505 |
+
identify==1.5.10
|
| 506 |
+
idna==2.10
|
| 507 |
+
imageio==2.9.0
|
| 508 |
+
imagesize==1.2.0
|
| 509 |
+
importlib-metadata==4.8.1
|
| 510 |
+
importlib-resources==5.2.2
|
| 511 |
+
inflect==5.3.0
|
| 512 |
+
inquirer==3.1.3
|
| 513 |
+
ipadic==1.0.0
|
| 514 |
+
ipyevents==2.0.1
|
| 515 |
+
ipykernel==5.3.4
|
| 516 |
+
ipython==7.19.0
|
| 517 |
+
ipython-genutils==0.2.0
|
| 518 |
+
ipywebrtc==0.6.0
|
| 519 |
+
ipywidgets==7.6.3
|
| 520 |
+
iso-639==0.4.5
|
| 521 |
+
isodate==0.6.0
|
| 522 |
+
isort==4.3.21
|
| 523 |
+
itsdangerous==2.1.2
|
| 524 |
+
Janome==0.5.0
|
| 525 |
+
jedi==0.17.2
|
| 526 |
+
jeepney==0.8.0
|
| 527 |
+
jieba==0.42.1
|
| 528 |
+
Jinja2==3.0.3
|
| 529 |
+
jiwer==2.2.0
|
| 530 |
+
jmespath==0.10.0
|
| 531 |
+
joblib==0.17.0
|
| 532 |
+
jsonschema==3.2.0
|
| 533 |
+
julius==0.2.7
|
| 534 |
+
jupyter-client==6.1.7
|
| 535 |
+
jupyter-core==4.7.0
|
| 536 |
+
jupyterlab-pygments==0.1.2
|
| 537 |
+
jupyterlab-widgets==1.0.0
|
| 538 |
+
kaitaistruct==0.9
|
| 539 |
+
kaldi-io==0.9.4
|
| 540 |
+
kaldi-python-io==1.2.2
|
| 541 |
+
kaldiio==2.17.2
|
| 542 |
+
kenlm @ https://github.com/kpu/kenlm/archive/master.zip
|
| 543 |
+
Keras-Preprocessing==1.1.2
|
| 544 |
+
kiwisolver==1.3.1
|
| 545 |
+
lang-trans==0.6.0
|
| 546 |
+
langdetect==1.0.9
|
| 547 |
+
latexcodec==2.0.1
|
| 548 |
+
ldap3==2.9.1
|
| 549 |
+
librosa==0.9.0
|
| 550 |
+
lightning-cloud==0.5.37
|
| 551 |
+
lightning-utilities==0.8.0
|
| 552 |
+
linkify-it-py==1.0.3
|
| 553 |
+
lit==16.0.6
|
| 554 |
+
llvmlite==0.35.0
|
| 555 |
+
lxml==4.9.0
|
| 556 |
+
Mako==1.1.5
|
| 557 |
+
Markdown==3.3.3
|
| 558 |
+
markdown-it-py==3.0.0
|
| 559 |
+
MarkupSafe==2.1.3
|
| 560 |
+
marshmallow==3.14.0
|
| 561 |
+
matplotlib==3.3.3
|
| 562 |
+
mccabe==0.6.1
|
| 563 |
+
mcd==0.4
|
| 564 |
+
mdit-py-plugins==0.3.3
|
| 565 |
+
mdurl==0.1.2
|
| 566 |
+
mecab-python3==1.0.3
|
| 567 |
+
megatron-lm==2.2.0
|
| 568 |
+
metrics==0.3.3
|
| 569 |
+
mido==1.2.10
|
| 570 |
+
mistune==0.8.4
|
| 571 |
+
more-itertools==8.6.0
|
| 572 |
+
mpld3==0.3
|
| 573 |
+
mpmath==1.2.1
|
| 574 |
+
multidict==5.2.0
|
| 575 |
+
multiprocess==0.70.11.1
|
| 576 |
+
nbclient==0.5.3
|
| 577 |
+
nbconvert==5.6.1
|
| 578 |
+
nbformat==5.9.0
|
| 579 |
+
NEMO==4.3.2
|
| 580 |
+
nemo-toolkit==1.4.0
|
| 581 |
+
nest-asyncio==1.5.1
|
| 582 |
+
networkx==2.8.8
|
| 583 |
+
nltk==3.2.4
|
| 584 |
+
nodeenv==1.5.0
|
| 585 |
+
normalize==2.0.2
|
| 586 |
+
notebook==6.3.0
|
| 587 |
+
numba==0.52.0
|
| 588 |
+
numpy==1.19.4
|
| 589 |
+
nvidia-cublas-cu11==11.10.3.66
|
| 590 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
| 591 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
| 592 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
| 593 |
+
nvidia-cudnn-cu11==8.5.0.96
|
| 594 |
+
nvidia-cufft-cu11==10.9.0.58
|
| 595 |
+
nvidia-curand-cu11==10.2.10.91
|
| 596 |
+
nvidia-cusolver-cu11==11.4.0.1
|
| 597 |
+
nvidia-cusparse-cu11==11.7.4.91
|
| 598 |
+
nvidia-nccl-cu11==2.14.3
|
| 599 |
+
nvidia-nvtx-cu11==11.7.91
|
| 600 |
+
oauthlib==3.1.0
|
| 601 |
+
omegaconf==2.3.0
|
| 602 |
+
onnx==1.10.2
|
| 603 |
+
OpenCC==1.1.2
|
| 604 |
+
opencv-python==4.4.0.46
|
| 605 |
+
openpyxl==3.0.9
|
| 606 |
+
opensmile==2.2.0
|
| 607 |
+
opt-einsum==3.3.0
|
| 608 |
+
optuna==2.10.0
|
| 609 |
+
ordered-set==4.1.0
|
| 610 |
+
orjson==3.8.4
|
| 611 |
+
oyaml==1.0
|
| 612 |
+
packaging==22.0
|
| 613 |
+
pandas==1.2.5
|
| 614 |
+
pandocfilters==1.4.3
|
| 615 |
+
pangu==4.0.6.1
|
| 616 |
+
parameterized==0.8.1
|
| 617 |
+
parso==0.7.1
|
| 618 |
+
pathlib2==2.3.7.post1
|
| 619 |
+
pathspec==0.5.5
|
| 620 |
+
pathtools==0.1.2
|
| 621 |
+
pbr==5.6.0
|
| 622 |
+
pefile==2019.4.18
|
| 623 |
+
pescador==2.1.0
|
| 624 |
+
pesq==0.0.3
|
| 625 |
+
pexpect==4.8.0
|
| 626 |
+
phonemizer==2.2.1
|
| 627 |
+
pickleshare==0.7.5
|
| 628 |
+
Pillow==9.3.0
|
| 629 |
+
pip-api==0.0.23
|
| 630 |
+
pipreqs==0.4.11
|
| 631 |
+
pluggy==0.13.1
|
| 632 |
+
pooch==1.3.0
|
| 633 |
+
portalocker==2.3.2
|
| 634 |
+
pptree==3.1
|
| 635 |
+
pre-commit==2.9.0
|
| 636 |
+
preprocessing==0.1.13
|
| 637 |
+
pretty-midi==0.2.9
|
| 638 |
+
prettytable==2.2.1
|
| 639 |
+
primePy==1.3
|
| 640 |
+
progressbar2==3.53.1
|
| 641 |
+
prometheus-client==0.10.1
|
| 642 |
+
promise==2.3
|
| 643 |
+
prompt-toolkit==3.0.8
|
| 644 |
+
protobuf==3.20.3
|
| 645 |
+
psutil==5.6.6
|
| 646 |
+
ptyprocess==0.6.0
|
| 647 |
+
py==1.9.0
|
| 648 |
+
py-espeak-ng==0.1.8
|
| 649 |
+
py4j==0.10.9.7
|
| 650 |
+
pyannote.audio==2.1.1
|
| 651 |
+
pyannote.core==4.5
|
| 652 |
+
pyannote.database==4.1.3
|
| 653 |
+
pyannote.metrics==3.2.1
|
| 654 |
+
pyannote.pipeline==2.3
|
| 655 |
+
pyannotebook==0.1.0.dev0
|
| 656 |
+
PyArabic==0.6.15
|
| 657 |
+
pyarrow==3.0.0
|
| 658 |
+
pyasn1==0.4.8
|
| 659 |
+
pyasn1-modules==0.2.8
|
| 660 |
+
pybind11==2.8.1
|
| 661 |
+
pybtex==0.24.0
|
| 662 |
+
pybtex-docutils==1.0.1
|
| 663 |
+
pycodestyle==2.5.0
|
| 664 |
+
pycparser==2.20
|
| 665 |
+
pycryptodome==3.16.0
|
| 666 |
+
pyctcdecode==0.4.0
|
| 667 |
+
pydantic==1.10.4
|
| 668 |
+
pyDeprecate==0.3.1
|
| 669 |
+
pydub==0.25.1
|
| 670 |
+
pyflakes==2.1.1
|
| 671 |
+
Pygments==2.15.1
|
| 672 |
+
pygtrie==2.5.0
|
| 673 |
+
PyJWT==2.7.0
|
| 674 |
+
pymodbus==2.5.3
|
| 675 |
+
pyparsing==2.4.7
|
| 676 |
+
pyperclip==1.8.2
|
| 677 |
+
pypinyin==0.43.0
|
| 678 |
+
pyrsistent==0.17.3
|
| 679 |
+
pyserial==3.5
|
| 680 |
+
PySocks==1.7.1
|
| 681 |
+
pystoi==0.3.3
|
| 682 |
+
pytest==5.4.1
|
| 683 |
+
pytest-runner==5.3.1
|
| 684 |
+
python-bidi==0.4.2
|
| 685 |
+
python-crfsuite==0.9.7
|
| 686 |
+
python-dateutil==2.8.2
|
| 687 |
+
python-editor==1.0.4
|
| 688 |
+
python-Levenshtein==0.12.2
|
| 689 |
+
python-multipart==0.0.5
|
| 690 |
+
python-utils==2.4.0
|
| 691 |
+
pytorch-lightning==1.6.5
|
| 692 |
+
pytorch-metric-learning==1.7.3
|
| 693 |
+
pytorch-revgrad==0.2.0
|
| 694 |
+
pytube==11.0.1
|
| 695 |
+
pytz==2022.6
|
| 696 |
+
PyWavelets==1.1.1
|
| 697 |
+
PyYAML==6.0
|
| 698 |
+
pyzmq==20.0.0
|
| 699 |
+
rapidfuzz==1.8.2
|
| 700 |
+
readchar==4.0.5
|
| 701 |
+
regex==2020.11.13
|
| 702 |
+
requests==2.28.1
|
| 703 |
+
requests-oauthlib==1.3.0
|
| 704 |
+
resampy==0.2.2
|
| 705 |
+
rfc3986==1.4.0
|
| 706 |
+
rich==13.4.2
|
| 707 |
+
richenum==1.3.1
|
| 708 |
+
rsa==4.7
|
| 709 |
+
ruamel.yaml==0.17.21
|
| 710 |
+
ruamel.yaml.clib==0.2.7
|
| 711 |
+
s3m==1.1.0
|
| 712 |
+
s3transfer==0.5.0
|
| 713 |
+
sacrebleu==2.0.0
|
| 714 |
+
sacremoses==0.0.44
|
| 715 |
+
safetensors==0.3.1
|
| 716 |
+
scikit-image==0.18.1
|
| 717 |
+
scikit-learn==0.23.2
|
| 718 |
+
scipy==1.5.4
|
| 719 |
+
-e git+https://github.com/sanghack81/SDCIT@00d060dde733fde9345154a494f81e97fb395ca7#egg=SDCIT
|
| 720 |
+
seaborn==0.11.1
|
| 721 |
+
SecretStorage==3.3.3
|
| 722 |
+
segments==2.1.3
|
| 723 |
+
segtok==1.5.11
|
| 724 |
+
semantic-version==2.10.0
|
| 725 |
+
semver==2.13.0
|
| 726 |
+
Send2Trash==1.5.0
|
| 727 |
+
sentencepiece==0.1.99
|
| 728 |
+
sentry-sdk==1.4.3
|
| 729 |
+
shellingham==1.4.0
|
| 730 |
+
shortuuid==1.0.7
|
| 731 |
+
SIDEKIT==1.3.8.5.2
|
| 732 |
+
simplejson==3.17.5
|
| 733 |
+
singledispatchmethod==1.0
|
| 734 |
+
six==1.15.0
|
| 735 |
+
smart-open==5.0.0
|
| 736 |
+
smmap==5.0.0
|
| 737 |
+
sniffio==1.3.0
|
| 738 |
+
snowballstemmer==2.0.0
|
| 739 |
+
sortedcollections==2.1.0
|
| 740 |
+
sortedcontainers==2.4.0
|
| 741 |
+
sounddevice==0.4.5
|
| 742 |
+
SoundFile==0.10.3.post1
|
| 743 |
+
soupsieve==2.3
|
| 744 |
+
sox==1.4.1
|
| 745 |
+
sparsemax==0.1.9
|
| 746 |
+
speechbrain==0.5.14
|
| 747 |
+
sphfile==1.0.3
|
| 748 |
+
Sphinx==3.3.1
|
| 749 |
+
sphinx-rtd-theme==0.2.4
|
| 750 |
+
sphinxcontrib-applehelp==1.0.2
|
| 751 |
+
sphinxcontrib-bibtex==2.4.1
|
| 752 |
+
sphinxcontrib-devhelp==1.0.2
|
| 753 |
+
sphinxcontrib-htmlhelp==1.0.3
|
| 754 |
+
sphinxcontrib-jsmath==1.0.1
|
| 755 |
+
sphinxcontrib-qthelp==1.0.3
|
| 756 |
+
sphinxcontrib-serializinghtml==1.1.4
|
| 757 |
+
SQLAlchemy==1.4.25
|
| 758 |
+
sqlitedict==2.1.0
|
| 759 |
+
sqlparse==0.4.2
|
| 760 |
+
stanza==1.4.2
|
| 761 |
+
starlette==0.27.0
|
| 762 |
+
starsessions==1.3.0
|
| 763 |
+
stevedore==3.4.0
|
| 764 |
+
subprocess32==3.5.4
|
| 765 |
+
sympy==1.9
|
| 766 |
+
tabulate==0.8.9
|
| 767 |
+
tensorboard==2.4.0
|
| 768 |
+
tensorboard-plugin-wit==1.7.0
|
| 769 |
+
tensorboardX==2.6.1
|
| 770 |
+
tensorflow==2.4.0
|
| 771 |
+
tensorflow-estimator==2.4.0
|
| 772 |
+
termcolor==1.1.0
|
| 773 |
+
terminado==0.9.4
|
| 774 |
+
testpath==0.4.4
|
| 775 |
+
threadpoolctl==2.1.0
|
| 776 |
+
tifffile==2020.12.8
|
| 777 |
+
tikzplotlib==0.9.8
|
| 778 |
+
tinycss2==1.2.1
|
| 779 |
+
tkseem==0.0.3
|
| 780 |
+
tokenizers==0.13.3
|
| 781 |
+
toml==0.10.2
|
| 782 |
+
toolz==0.12.0
|
| 783 |
+
torch==1.13.1
|
| 784 |
+
torch-audiomentations==0.11.0
|
| 785 |
+
torch-pitch-shift==1.2.4
|
| 786 |
+
torch-stft==0.1.4
|
| 787 |
+
torchaudio==0.13.1
|
| 788 |
+
torchmetrics==0.11.4
|
| 789 |
+
torchvision==0.14.1
|
| 790 |
+
tornado==6.1
|
| 791 |
+
tqdm==4.61.1
|
| 792 |
+
trackrip==1.2.1
|
| 793 |
+
traitlets==5.9.0
|
| 794 |
+
transformer-smaller-training-vocab==0.3.1
|
| 795 |
+
transformers==4.30.2
|
| 796 |
+
triton==2.0.0
|
| 797 |
+
typed-ast==1.4.1
|
| 798 |
+
typer==0.4.0
|
| 799 |
+
typing-extensions==4.4.0
|
| 800 |
+
uc-micro-py==1.0.1
|
| 801 |
+
Unidecode==1.3.2
|
| 802 |
+
uritemplate==3.0.1
|
| 803 |
+
urllib3==1.26.2
|
| 804 |
+
uvicorn==0.20.0
|
| 805 |
+
versioneer==0.28
|
| 806 |
+
virtualenv==20.2.1
|
| 807 |
+
wandb==0.12.6
|
| 808 |
+
wcwidth==0.2.5
|
| 809 |
+
webdataset==0.1.62
|
| 810 |
+
webencodings==0.5.1
|
| 811 |
+
websocket-client==1.6.1
|
| 812 |
+
websockets==10.4
|
| 813 |
+
Werkzeug==1.0.1
|
| 814 |
+
wget==3.2
|
| 815 |
+
widgetsnbextension==3.5.1
|
| 816 |
+
Wikipedia-API==0.6.0
|
| 817 |
+
wordninja==2.0.0
|
| 818 |
+
wrapt==1.12.1
|
| 819 |
+
xmltodict==0.13.0
|
| 820 |
+
xxhash==2.0.0
|
| 821 |
+
yamllint==1.23.0
|
| 822 |
+
yarg==0.1.9
|
| 823 |
+
yarl==1.7.2
|
| 824 |
+
yaspin==2.1.0
|
| 825 |
+
youtokentome==1.0.6
|
| 826 |
+
youtube-dl==2021.6.6
|
| 827 |
+
zipp==3.6.0
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
2023-09-25 11:12:55,173 - speechbrain.utils.superpowers - DEBUG - be9098b
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
2023-09-25 11:12:55,216 - speechbrain.pretrained.fetching - INFO - Fetch hyperparams.yaml: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/hyperparams.yaml.
|
| 834 |
+
2023-09-25 11:12:55,217 - speechbrain.pretrained.fetching - INFO - Fetch custom.py: Linking to local file in /home/salah/Code-Switched-Tunisian-SpeechToText/asr-wav2vec2-commonvoice-fr/custom.py.
|
| 835 |
+
2023-09-25 11:12:58,078 - speechbrain.lobes.models.huggingface_wav2vec - WARNING - speechbrain.lobes.models.huggingface_wav2vec - wav2vec 2.0 is frozen.
|
| 836 |
+
2023-09-25 11:12:58,080 - speechbrain.utils.parameter_transfer - DEBUG - Collecting files (or symlinks) for pretraining in pretrained_models/asr-wav2vec2-commonvoice-fr.
|
| 837 |
+
2023-09-25 11:12:58,087 - speechbrain.pretrained.fetching - INFO - Fetch wav2vec2.ckpt: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/wav2vec2.ckpt.
|
| 838 |
+
2023-09-25 11:12:58,087 - speechbrain.pretrained.fetching - INFO - Fetch asr.ckpt: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/asr.ckpt.
|
| 839 |
+
2023-09-25 11:12:58,087 - speechbrain.pretrained.fetching - INFO - Fetch tokenizer.ckpt: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/tokenizer.ckpt.
|
| 840 |
+
2023-09-25 11:12:58,087 - speechbrain.utils.parameter_transfer - INFO - Loading pretrained files for: wav2vec2, asr, tokenizer
|
| 841 |
+
2023-09-25 11:13:01,875 - speechbrain.lobes.models.huggingface_wav2vec - WARNING - speechbrain.lobes.models.huggingface_wav2vec - wav2vec 2.0 feature extractor is frozen.
|
| 842 |
+
2023-09-25 11:13:01,877 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
| 843 |
+
2023-09-25 11:13:01,877 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
| 844 |
+
2023-09-25 11:13:01,880 - speechbrain.core - INFO - 314.4M trainable parameters in ASRCV
|
| 845 |
+
2023-09-25 11:13:01,885 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00
|
| 846 |
+
2023-09-25 11:13:04,505 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
| 847 |
+
2023-09-25 11:13:04,505 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
| 848 |
+
2023-09-25 11:13:04,509 - speechbrain.core - INFO - 314.4M trainable parameters in ASR
|
| 849 |
+
2023-09-25 11:13:04,513 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from TunisianASR/results/14epoch_tunisian/1234/save/CKPT+2023-08-03+01-38-38+00
|
| 850 |
+
2023-09-25 11:13:05,900 - speechbrain.utils.distributed - INFO - distributed_launch flag is disabled, this experiment will be executed without DDP.
|
__pycache__/cv_train.cpython-38.pyc
CHANGED
|
Binary files a/__pycache__/cv_train.cpython-38.pyc and b/__pycache__/cv_train.cpython-38.pyc differ
|
|
|
app.py
CHANGED
|
@@ -356,7 +356,7 @@ english_asr_model = ASRCV(
|
|
| 356 |
)
|
| 357 |
english_asr_model.modules.to("cpu")
|
| 358 |
english_asr_model.device="cpu"
|
| 359 |
-
|
| 360 |
run_opts["device"]="cpu"
|
| 361 |
print("moving to tunisian model")
|
| 362 |
asr_brain = ASR(
|
|
@@ -366,7 +366,7 @@ asr_brain = ASR(
|
|
| 366 |
checkpointer=hparams["checkpointer"],
|
| 367 |
)
|
| 368 |
asr_brain.modules.to("cpu")
|
| 369 |
-
|
| 370 |
asr_brain.modules.eval()
|
| 371 |
english_asr_model.modules.eval()
|
| 372 |
french_asr_model.mods.eval()
|
|
@@ -713,7 +713,7 @@ mixer = Mixer(
|
|
| 713 |
)
|
| 714 |
mixer.tokenizer = label_encoder
|
| 715 |
mixer.device = "cpu"
|
| 716 |
-
|
| 717 |
mixer.modules.eval()
|
| 718 |
|
| 719 |
|
|
|
|
| 356 |
)
|
| 357 |
english_asr_model.modules.to("cpu")
|
| 358 |
english_asr_model.device="cpu"
|
| 359 |
+
english_asr_model.checkpointer.recover_if_possible(device="cpu")
|
| 360 |
run_opts["device"]="cpu"
|
| 361 |
print("moving to tunisian model")
|
| 362 |
asr_brain = ASR(
|
|
|
|
| 366 |
checkpointer=hparams["checkpointer"],
|
| 367 |
)
|
| 368 |
asr_brain.modules.to("cpu")
|
| 369 |
+
asr_brain.checkpointer.recover_if_possible(device="cpu")
|
| 370 |
asr_brain.modules.eval()
|
| 371 |
english_asr_model.modules.eval()
|
| 372 |
french_asr_model.mods.eval()
|
|
|
|
| 713 |
)
|
| 714 |
mixer.tokenizer = label_encoder
|
| 715 |
mixer.device = "cpu"
|
| 716 |
+
mixer.checkpointer.recover_if_possible(device="cpu")
|
| 717 |
mixer.modules.eval()
|
| 718 |
|
| 719 |
|
pretrained_models/asr-wav2vec2-commonvoice-fr/custom.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
/home/salah/
|
|
|
|
| 1 |
+
/home/salah/Code-Switched-Tunisian-SpeechToText/asr-wav2vec2-commonvoice-fr/custom.py
|
results/non_semi_final_stac/app.py
ADDED
|
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import logging
|
| 5 |
+
import speechbrain as sb
|
| 6 |
+
from speechbrain.utils.distributed import run_on_main
|
| 7 |
+
from hyperpyyaml import load_hyperpyyaml
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import torchaudio.transforms as T
|
| 10 |
+
from cv_train import ASRCV
|
| 11 |
+
import torchaudio
|
| 12 |
+
import numpy as np
|
| 13 |
+
import kenlm
|
| 14 |
+
from pyctcdecode import build_ctcdecoder
|
| 15 |
+
import re
|
| 16 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 17 |
+
import torch.optim as optim
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 22 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(["TunisianASR/semi_trained.yaml"])
|
| 23 |
+
|
| 24 |
+
# If distributed_launch=True then
|
| 25 |
+
# create ddp_group with the right communication protocol
|
| 26 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
| 27 |
+
|
| 28 |
+
with open(hparams_file) as fin:
|
| 29 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
| 30 |
+
|
| 31 |
+
# Create experiment directory
|
| 32 |
+
sb.create_experiment_directory(
|
| 33 |
+
experiment_directory=hparams["output_folder"],
|
| 34 |
+
hyperparams_to_save=hparams_file,
|
| 35 |
+
overrides=overrides,
|
| 36 |
+
)
|
| 37 |
+
# Dataset prep (parsing Librispeech)
|
| 38 |
+
|
| 39 |
+
def dataio_prepare(hparams):
|
| 40 |
+
"""This function prepares the datasets to be used in the brain class.
|
| 41 |
+
It also defines the data processing pipeline through user-defined functions."""
|
| 42 |
+
|
| 43 |
+
# 1. Define datasets
|
| 44 |
+
data_folder = hparams["data_folder"]
|
| 45 |
+
|
| 46 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
| 47 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if hparams["sorting"] == "ascending":
|
| 51 |
+
# we sort training data to speed up training and get better results.
|
| 52 |
+
train_data = train_data.filtered_sorted(
|
| 53 |
+
sort_key="duration",
|
| 54 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
| 55 |
+
)
|
| 56 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
| 57 |
+
hparams["dataloader_options"]["shuffle"] = False
|
| 58 |
+
|
| 59 |
+
elif hparams["sorting"] == "descending":
|
| 60 |
+
train_data = train_data.filtered_sorted(
|
| 61 |
+
sort_key="duration",
|
| 62 |
+
reverse=True,
|
| 63 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
| 64 |
+
)
|
| 65 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
| 66 |
+
hparams["dataloader_options"]["shuffle"] = False
|
| 67 |
+
|
| 68 |
+
elif hparams["sorting"] == "random":
|
| 69 |
+
pass
|
| 70 |
+
|
| 71 |
+
else:
|
| 72 |
+
raise NotImplementedError(
|
| 73 |
+
"sorting must be random, ascending or descending"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
| 77 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
| 78 |
+
)
|
| 79 |
+
# We also sort the validation data so it is faster to validate
|
| 80 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
| 81 |
+
test_datasets = {}
|
| 82 |
+
for csv_file in hparams["test_csv"]:
|
| 83 |
+
name = Path(csv_file).stem
|
| 84 |
+
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
| 85 |
+
csv_path=csv_file, replacements={"data_root": data_folder}
|
| 86 |
+
)
|
| 87 |
+
test_datasets[name] = test_datasets[name].filtered_sorted(
|
| 88 |
+
sort_key="duration"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# 2. Define audio pipeline:
|
| 95 |
+
@sb.utils.data_pipeline.takes("wav")
|
| 96 |
+
@sb.utils.data_pipeline.provides("sig")
|
| 97 |
+
def audio_pipeline(wav):
|
| 98 |
+
info = torchaudio.info(wav)
|
| 99 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
| 100 |
+
if len(sig.shape)>1 :
|
| 101 |
+
sig = torch.mean(sig, dim=1)
|
| 102 |
+
resampled = torchaudio.transforms.Resample(
|
| 103 |
+
info.sample_rate, hparams["sample_rate"],
|
| 104 |
+
)(sig)
|
| 105 |
+
return resampled
|
| 106 |
+
|
| 107 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
| 108 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
| 109 |
+
|
| 110 |
+
# 3. Define text pipeline:
|
| 111 |
+
@sb.utils.data_pipeline.takes("wrd")
|
| 112 |
+
@sb.utils.data_pipeline.provides(
|
| 113 |
+
"wrd", "char_list", "tokens_list", "tokens"
|
| 114 |
+
)
|
| 115 |
+
def text_pipeline(wrd):
|
| 116 |
+
yield wrd
|
| 117 |
+
char_list = list(wrd)
|
| 118 |
+
yield char_list
|
| 119 |
+
tokens_list = label_encoder.encode_sequence(char_list)
|
| 120 |
+
yield tokens_list
|
| 121 |
+
tokens = torch.LongTensor(tokens_list)
|
| 122 |
+
yield tokens
|
| 123 |
+
|
| 124 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
| 125 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
| 126 |
+
special_labels = {
|
| 127 |
+
"blank_label": hparams["blank_index"],
|
| 128 |
+
"unk_label": hparams["unk_index"]
|
| 129 |
+
}
|
| 130 |
+
label_encoder.load_or_create(
|
| 131 |
+
path=lab_enc_file,
|
| 132 |
+
from_didatasets=[train_data],
|
| 133 |
+
output_key="char_list",
|
| 134 |
+
special_labels=special_labels,
|
| 135 |
+
sequence_input=True,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# 4. Set output:
|
| 139 |
+
sb.dataio.dataset.set_output_keys(
|
| 140 |
+
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
|
| 141 |
+
)
|
| 142 |
+
return train_data, valid_data,test_datasets, label_encoder
|
| 143 |
+
|
| 144 |
+
class ASR(sb.core.Brain):
|
| 145 |
+
def compute_forward(self, batch, stage):
|
| 146 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
| 147 |
+
|
| 148 |
+
batch = batch.to(self.device)
|
| 149 |
+
wavs, wav_lens = batch.sig
|
| 150 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
| 151 |
+
|
| 152 |
+
if stage == sb.Stage.TRAIN:
|
| 153 |
+
if hasattr(self.hparams, "augmentation"):
|
| 154 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
| 155 |
+
|
| 156 |
+
# Forward pass
|
| 157 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
| 158 |
+
x = self.modules.enc(feats)
|
| 159 |
+
logits = self.modules.ctc_lin(x)
|
| 160 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 161 |
+
|
| 162 |
+
return p_ctc, wav_lens
|
| 163 |
+
|
| 164 |
+
def custom_encode(self,wavs,wav_lens) :
|
| 165 |
+
wavs = wavs.to("cpu")
|
| 166 |
+
if(wav_lens is not None): wav_lens.to(self.device)
|
| 167 |
+
|
| 168 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
| 169 |
+
x = self.modules.enc(feats)
|
| 170 |
+
logits = self.modules.ctc_lin(x)
|
| 171 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 172 |
+
|
| 173 |
+
return feats,p_ctc
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def compute_objectives(self, predictions, batch, stage):
|
| 178 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
| 179 |
+
|
| 180 |
+
p_ctc, wav_lens = predictions
|
| 181 |
+
|
| 182 |
+
ids = batch.id
|
| 183 |
+
tokens, tokens_lens = batch.tokens
|
| 184 |
+
|
| 185 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
| 186 |
+
|
| 187 |
+
if stage != sb.Stage.TRAIN:
|
| 188 |
+
predicted_tokens = sb.decoders.ctc_greedy_decode(
|
| 189 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
| 190 |
+
)
|
| 191 |
+
# Decode token terms to words
|
| 192 |
+
if self.hparams.use_language_modelling:
|
| 193 |
+
predicted_words = []
|
| 194 |
+
for logs in p_ctc:
|
| 195 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
| 196 |
+
predicted_words.append(text.split(" "))
|
| 197 |
+
else:
|
| 198 |
+
predicted_words = [
|
| 199 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
| 200 |
+
for utt_seq in predicted_tokens
|
| 201 |
+
]
|
| 202 |
+
# Convert indices to words
|
| 203 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
| 204 |
+
|
| 205 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
| 206 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
| 207 |
+
|
| 208 |
+
return loss
|
| 209 |
+
|
| 210 |
+
def fit_batch(self, batch):
|
| 211 |
+
"""Train the parameters given a single batch in input"""
|
| 212 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
| 213 |
+
# Managing automatic mixed precision
|
| 214 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
| 215 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
| 216 |
+
if self.auto_mix_prec:
|
| 217 |
+
with torch.cuda.amp.autocast():
|
| 218 |
+
with self.no_sync():
|
| 219 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 220 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 221 |
+
with self.no_sync(not should_step):
|
| 222 |
+
self.scaler.scale(
|
| 223 |
+
loss / self.grad_accumulation_factor
|
| 224 |
+
).backward()
|
| 225 |
+
if should_step:
|
| 226 |
+
|
| 227 |
+
if not self.hparams.wav2vec2.freeze:
|
| 228 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
| 229 |
+
self.scaler.unscale_(self.model_optimizer)
|
| 230 |
+
if self.check_gradients(loss):
|
| 231 |
+
if not self.hparams.wav2vec2.freeze:
|
| 232 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
| 233 |
+
self.scaler.step(self.wav2vec_optimizer)
|
| 234 |
+
self.scaler.step(self.model_optimizer)
|
| 235 |
+
self.scaler.update()
|
| 236 |
+
self.zero_grad()
|
| 237 |
+
self.optimizer_step += 1
|
| 238 |
+
else:
|
| 239 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
| 240 |
+
# on the forward pass
|
| 241 |
+
with self.no_sync():
|
| 242 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 243 |
+
|
| 244 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 245 |
+
|
| 246 |
+
with self.no_sync(not should_step):
|
| 247 |
+
(loss / self.grad_accumulation_factor).backward()
|
| 248 |
+
if should_step:
|
| 249 |
+
if self.check_gradients(loss):
|
| 250 |
+
if not self.hparams.wav2vec2.freeze:
|
| 251 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
| 252 |
+
self.wav2vec_optimizer.step()
|
| 253 |
+
self.model_optimizer.step()
|
| 254 |
+
self.zero_grad()
|
| 255 |
+
self.optimizer_step += 1
|
| 256 |
+
|
| 257 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
| 258 |
+
return loss.detach().cpu()
|
| 259 |
+
|
| 260 |
+
def evaluate_batch(self, batch, stage):
|
| 261 |
+
"""Computations needed for validation/test batches"""
|
| 262 |
+
predictions = self.compute_forward(batch, stage=stage)
|
| 263 |
+
with torch.no_grad():
|
| 264 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
| 265 |
+
return loss.detach()
|
| 266 |
+
|
| 267 |
+
def on_stage_start(self, stage, epoch):
|
| 268 |
+
"""Gets called at the beginning of each epoch"""
|
| 269 |
+
if stage != sb.Stage.TRAIN:
|
| 270 |
+
self.cer_metric = self.hparams.cer_computer()
|
| 271 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
| 272 |
+
|
| 273 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
| 274 |
+
"""Gets called at the end of an epoch."""
|
| 275 |
+
# Compute/store important stats
|
| 276 |
+
stage_stats = {"loss": stage_loss}
|
| 277 |
+
if stage == sb.Stage.TRAIN:
|
| 278 |
+
self.train_stats = stage_stats
|
| 279 |
+
else:
|
| 280 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
| 281 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
| 282 |
+
|
| 283 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
| 284 |
+
if stage == sb.Stage.VALID:
|
| 285 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
| 286 |
+
stage_stats["loss"]
|
| 287 |
+
)
|
| 288 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
| 289 |
+
stage_stats["loss"]
|
| 290 |
+
)
|
| 291 |
+
sb.nnet.schedulers.update_learning_rate(
|
| 292 |
+
self.model_optimizer, new_lr_model
|
| 293 |
+
)
|
| 294 |
+
if not self.hparams.wav2vec2.freeze:
|
| 295 |
+
sb.nnet.schedulers.update_learning_rate(
|
| 296 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
| 297 |
+
)
|
| 298 |
+
self.hparams.train_logger.log_stats(
|
| 299 |
+
stats_meta={
|
| 300 |
+
"epoch": epoch,
|
| 301 |
+
"lr_model": old_lr_model,
|
| 302 |
+
"lr_wav2vec": old_lr_wav2vec,
|
| 303 |
+
},
|
| 304 |
+
train_stats=self.train_stats,
|
| 305 |
+
valid_stats=stage_stats,
|
| 306 |
+
)
|
| 307 |
+
self.checkpointer.save_and_keep_only(
|
| 308 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
| 309 |
+
)
|
| 310 |
+
elif stage == sb.Stage.TEST:
|
| 311 |
+
self.hparams.train_logger.log_stats(
|
| 312 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
| 313 |
+
test_stats=stage_stats,
|
| 314 |
+
)
|
| 315 |
+
with open(self.hparams.wer_file, "w") as w:
|
| 316 |
+
self.wer_metric.write_stats(w)
|
| 317 |
+
|
| 318 |
+
def init_optimizers(self):
|
| 319 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
| 320 |
+
|
| 321 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
| 322 |
+
if not self.hparams.wav2vec2.freeze:
|
| 323 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
| 324 |
+
self.modules.wav2vec2.parameters()
|
| 325 |
+
)
|
| 326 |
+
if self.checkpointer is not None:
|
| 327 |
+
self.checkpointer.add_recoverable(
|
| 328 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
| 332 |
+
self.hparams.model.parameters()
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
if self.checkpointer is not None:
|
| 336 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
| 337 |
+
|
| 338 |
+
def zero_grad(self, set_to_none=False):
|
| 339 |
+
if not self.hparams.wav2vec2.freeze:
|
| 340 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
| 341 |
+
self.model_optimizer.zero_grad(set_to_none)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
|
| 345 |
+
french_asr_model = EncoderASR.from_hparams(source="asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr")
|
| 346 |
+
french_asr_model.to("cpu")
|
| 347 |
+
cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["EnglishCV/train_en_with_wav2vec.yaml"])
|
| 348 |
+
with open(cvhparams_file) as cvfin:
|
| 349 |
+
cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
|
| 350 |
+
cvrun_opts["device"]="cpu"
|
| 351 |
+
english_asr_model = ASRCV(
|
| 352 |
+
modules=cvhparams["modules"],
|
| 353 |
+
hparams=cvhparams,
|
| 354 |
+
run_opts=cvrun_opts,
|
| 355 |
+
checkpointer=cvhparams["checkpointer"],
|
| 356 |
+
)
|
| 357 |
+
english_asr_model.modules.to("cpu")
|
| 358 |
+
english_asr_model.device="cpu"
|
| 359 |
+
english_asr_model.checkpointer.recover_if_possible()
|
| 360 |
+
run_opts["device"]="cpu"
|
| 361 |
+
print("moving to tunisian model")
|
| 362 |
+
asr_brain = ASR(
|
| 363 |
+
modules=hparams["modules"],
|
| 364 |
+
hparams=hparams,
|
| 365 |
+
run_opts=run_opts,
|
| 366 |
+
checkpointer=hparams["checkpointer"],
|
| 367 |
+
)
|
| 368 |
+
asr_brain.modules.to("cpu")
|
| 369 |
+
asr_brain.checkpointer.recover_if_possible()
|
| 370 |
+
asr_brain.modules.eval()
|
| 371 |
+
english_asr_model.modules.eval()
|
| 372 |
+
french_asr_model.mods.eval()
|
| 373 |
+
asr_brain.modules.to("cpu")
|
| 374 |
+
|
| 375 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 376 |
+
# %ls
|
| 377 |
+
|
| 378 |
+
#UTILS FUNCTIOJNS
|
| 379 |
+
def get_size_dimensions(arr):
|
| 380 |
+
size_dimensions = []
|
| 381 |
+
while isinstance(arr, list):
|
| 382 |
+
size_dimensions.append(len(arr))
|
| 383 |
+
arr = arr[0]
|
| 384 |
+
return size_dimensions
|
| 385 |
+
|
| 386 |
+
def scale_array(batch,n):
|
| 387 |
+
scaled_batch = []
|
| 388 |
+
|
| 389 |
+
for array in batch:
|
| 390 |
+
if(n < len(array)): raise ValueError("Cannot scale Array down")
|
| 391 |
+
|
| 392 |
+
repeat = round(n/len(array))+1
|
| 393 |
+
scaled_length_array= []
|
| 394 |
+
|
| 395 |
+
for i in array:
|
| 396 |
+
for j in range(repeat) :
|
| 397 |
+
if(len(scaled_length_array) == n): break
|
| 398 |
+
scaled_length_array.append(i)
|
| 399 |
+
|
| 400 |
+
scaled_batch.append(scaled_length_array)
|
| 401 |
+
|
| 402 |
+
return torch.tensor(scaled_batch)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def load_paths(wavs_path):
|
| 406 |
+
waveforms = []
|
| 407 |
+
for path in wavs_path :
|
| 408 |
+
waveform, _ = torchaudio.load(path)
|
| 409 |
+
waveforms.append(waveform.squeeze(0))
|
| 410 |
+
# normalize array length to the bigger arrays by pading with 0's
|
| 411 |
+
padded_arrays = pad_sequence(waveforms, batch_first=True)
|
| 412 |
+
return torch.tensor(padded_arrays)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
device = 'cpu'
|
| 417 |
+
verbose = 0
|
| 418 |
+
#FLOW LEVEL FUNCTIONS
|
| 419 |
+
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
post1 = post1.to(device)
|
| 423 |
+
post2 = post2.to(device)
|
| 424 |
+
post3 = post3.to(device)
|
| 425 |
+
embeddings1 = embeddings1.to(device)
|
| 426 |
+
embeddings2 = embeddings2.to(device)
|
| 427 |
+
embeddings3 = embeddings3.to(device)
|
| 428 |
+
|
| 429 |
+
posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
|
| 430 |
+
embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)
|
| 431 |
+
|
| 432 |
+
if(verbose !=0):
|
| 433 |
+
print('MERGED POST ',posteriograms_merged.shape)
|
| 434 |
+
print('MERGED emb ',embeddings_merged.shape)
|
| 435 |
+
|
| 436 |
+
return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)
|
| 437 |
+
|
| 438 |
+
def decode(model,wavs,wav_lens):
|
| 439 |
+
|
| 440 |
+
with torch.no_grad():
|
| 441 |
+
wav_lens = wav_lens.to(model.device)
|
| 442 |
+
encoder_out = model.encode_batch(wavs, wav_lens)
|
| 443 |
+
predictions = model.decoding_function(encoder_out, wav_lens)
|
| 444 |
+
return predictions
|
| 445 |
+
|
| 446 |
+
def middle_layer(batch, lens):
|
| 447 |
+
|
| 448 |
+
tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)
|
| 449 |
+
|
| 450 |
+
fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
|
| 451 |
+
fr_posteriogram =french_asr_model.encode_batch(batch,lens)
|
| 452 |
+
en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
|
| 453 |
+
x = english_asr_model.modules.enc(en_embeddings)
|
| 454 |
+
en_posteriogram = english_asr_model.modules.ctc_lin(x)
|
| 455 |
+
#scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
|
| 456 |
+
if(verbose !=0):
|
| 457 |
+
print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
|
| 458 |
+
print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
|
| 462 |
+
return bilangual_sample
|
| 463 |
+
|
| 464 |
+
class Mixer(sb.core.Brain):
|
| 465 |
+
|
| 466 |
+
def compute_forward(self, batch, stage):
|
| 467 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
| 468 |
+
wavs, wav_lens = batch.sig
|
| 469 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
| 470 |
+
|
| 471 |
+
if stage == sb.Stage.TRAIN:
|
| 472 |
+
if hasattr(self.hparams, "augmentation"):
|
| 473 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
| 474 |
+
|
| 475 |
+
multi_langual_feats = middle_layer(wavs, wav_lens)
|
| 476 |
+
multi_langual_feats= multi_langual_feats.to(device)
|
| 477 |
+
feats, _ = self.modules.enc(multi_langual_feats)
|
| 478 |
+
logits = self.modules.ctc_lin(feats)
|
| 479 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 480 |
+
|
| 481 |
+
if stage!= sb.Stage.TRAIN:
|
| 482 |
+
p_tokens = sb.decoders.ctc_greedy_decode(
|
| 483 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
| 484 |
+
)
|
| 485 |
+
else :
|
| 486 |
+
p_tokens = None
|
| 487 |
+
return p_ctc, wav_lens, p_tokens
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def treat_wav(self,sig):
|
| 491 |
+
multi_langual_feats = middle_layer(sig.to("cpu"), torch.tensor([1]).to("cpu"))
|
| 492 |
+
multi_langual_feats= multi_langual_feats.to(device)
|
| 493 |
+
feats, _ = self.modules.enc(multi_langual_feats)
|
| 494 |
+
logits = self.modules.ctc_lin(feats)
|
| 495 |
+
p_ctc = self.hparams.log_softmax(logits)
|
| 496 |
+
predicted_words =[]
|
| 497 |
+
for logs in p_ctc:
|
| 498 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
| 499 |
+
predicted_words.append(text.split(" "))
|
| 500 |
+
return " ".join(predicted_words[0])
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
def compute_objectives(self, predictions, batch, stage):
|
| 504 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
| 505 |
+
|
| 506 |
+
p_ctc, wav_lens , predicted_tokens= predictions
|
| 507 |
+
|
| 508 |
+
ids = batch.id
|
| 509 |
+
tokens, tokens_lens = batch.tokens
|
| 510 |
+
|
| 511 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
if stage == sb.Stage.VALID:
|
| 515 |
+
predicted_words = [
|
| 516 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
| 517 |
+
for utt_seq in predicted_tokens
|
| 518 |
+
]
|
| 519 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
| 520 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
| 521 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
| 522 |
+
if stage ==sb.Stage.TEST :
|
| 523 |
+
if self.hparams.language_modelling:
|
| 524 |
+
predicted_words = []
|
| 525 |
+
for logs in p_ctc:
|
| 526 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
| 527 |
+
predicted_words.append(text.split(" "))
|
| 528 |
+
else :
|
| 529 |
+
predicted_words = [
|
| 530 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
| 531 |
+
for utt_seq in predicted_tokens
|
| 532 |
+
]
|
| 533 |
+
|
| 534 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
| 535 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
| 536 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
| 537 |
+
|
| 538 |
+
return loss
|
| 539 |
+
|
| 540 |
+
def fit_batch(self, batch):
|
| 541 |
+
"""Train the parameters given a single batch in input"""
|
| 542 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
| 543 |
+
# Managing automatic mixed precision
|
| 544 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
| 545 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
| 546 |
+
if self.auto_mix_prec:
|
| 547 |
+
with torch.cuda.amp.autocast():
|
| 548 |
+
with self.no_sync():
|
| 549 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 550 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 551 |
+
with self.no_sync(not should_step):
|
| 552 |
+
self.scaler.scale(
|
| 553 |
+
loss / self.grad_accumulation_factor
|
| 554 |
+
).backward()
|
| 555 |
+
if should_step:
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
self.scaler.unscale_(self.model_optimizer)
|
| 559 |
+
if self.check_gradients(loss):
|
| 560 |
+
self.scaler.step(self.model_optimizer)
|
| 561 |
+
self.scaler.update()
|
| 562 |
+
self.zero_grad()
|
| 563 |
+
self.optimizer_step += 1
|
| 564 |
+
else:
|
| 565 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
| 566 |
+
# on the forward pass
|
| 567 |
+
with self.no_sync():
|
| 568 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
| 569 |
+
|
| 570 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
| 571 |
+
|
| 572 |
+
with self.no_sync(not should_step):
|
| 573 |
+
(loss / self.grad_accumulation_factor).backward()
|
| 574 |
+
if should_step:
|
| 575 |
+
if self.check_gradients(loss):
|
| 576 |
+
self.model_optimizer.step()
|
| 577 |
+
self.zero_grad()
|
| 578 |
+
self.optimizer_step += 1
|
| 579 |
+
|
| 580 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
| 581 |
+
return loss.detach().cpu()
|
| 582 |
+
|
| 583 |
+
def evaluate_batch(self, batch, stage):
|
| 584 |
+
"""Computations needed for validation/test batches"""
|
| 585 |
+
predictions = self.compute_forward(batch, stage=stage)
|
| 586 |
+
with torch.no_grad():
|
| 587 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
| 588 |
+
return loss.detach()
|
| 589 |
+
|
| 590 |
+
def on_stage_start(self, stage, epoch):
|
| 591 |
+
"""Gets called at the beginning of each epoch"""
|
| 592 |
+
if stage != sb.Stage.TRAIN:
|
| 593 |
+
self.cer_metric = self.hparams.cer_computer()
|
| 594 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
| 595 |
+
|
| 596 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
| 597 |
+
"""Gets called at the end of an epoch."""
|
| 598 |
+
# Compute/store important stats
|
| 599 |
+
stage_stats = {"loss": stage_loss}
|
| 600 |
+
if stage == sb.Stage.TRAIN:
|
| 601 |
+
self.train_stats = stage_stats
|
| 602 |
+
else:
|
| 603 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
| 604 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
| 605 |
+
|
| 606 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
| 607 |
+
if stage == sb.Stage.VALID:
|
| 608 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
| 609 |
+
stage_stats["loss"]
|
| 610 |
+
)
|
| 611 |
+
sb.nnet.schedulers.update_learning_rate(
|
| 612 |
+
self.model_optimizer, new_lr_model
|
| 613 |
+
)
|
| 614 |
+
self.hparams.train_logger.log_stats(
|
| 615 |
+
stats_meta={
|
| 616 |
+
"epoch": epoch,
|
| 617 |
+
"lr_model": old_lr_model,
|
| 618 |
+
},
|
| 619 |
+
train_stats=self.train_stats,
|
| 620 |
+
valid_stats=stage_stats,
|
| 621 |
+
)
|
| 622 |
+
self.checkpointer.save_and_keep_only(
|
| 623 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
| 624 |
+
)
|
| 625 |
+
elif stage == sb.Stage.TEST:
|
| 626 |
+
self.hparams.train_logger.log_stats(
|
| 627 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
| 628 |
+
test_stats=stage_stats,
|
| 629 |
+
)
|
| 630 |
+
with open(self.hparams.wer_file, "w") as w:
|
| 631 |
+
self.wer_metric.write_stats(w)
|
| 632 |
+
|
| 633 |
+
def init_optimizers(self):
|
| 634 |
+
|
| 635 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
| 636 |
+
self.hparams.model.parameters()
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
if self.checkpointer is not None:
|
| 640 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
| 641 |
+
|
| 642 |
+
def zero_grad(self, set_to_none=False):
|
| 643 |
+
|
| 644 |
+
self.model_optimizer.zero_grad(set_to_none)
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(["cs.yaml"])
|
| 650 |
+
|
| 651 |
+
# If distributed_launch=True then
|
| 652 |
+
# create ddp_group with the right communication protocol
|
| 653 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
| 654 |
+
|
| 655 |
+
with open(hparams_file) as fin:
|
| 656 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
| 657 |
+
|
| 658 |
+
# Create experiment directory
|
| 659 |
+
sb.create_experiment_directory(
|
| 660 |
+
experiment_directory=hparams["output_folder"],
|
| 661 |
+
hyperparams_to_save=hparams_file,
|
| 662 |
+
overrides=overrides,
|
| 663 |
+
)
|
| 664 |
+
def read_labels_file(labels_file):
|
| 665 |
+
with open(labels_file, "r",encoding="utf-8") as lf:
|
| 666 |
+
lines = lf.read().splitlines()
|
| 667 |
+
division = "==="
|
| 668 |
+
numbers = {}
|
| 669 |
+
for line in lines :
|
| 670 |
+
if division in line :
|
| 671 |
+
break
|
| 672 |
+
string, number = line.split("=>")
|
| 673 |
+
number = int(number)
|
| 674 |
+
string = string[1:-2]
|
| 675 |
+
numbers[number] = string
|
| 676 |
+
return [numbers[x] for x in range(len(numbers))]
|
| 677 |
+
|
| 678 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
| 679 |
+
|
| 680 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
| 681 |
+
special_labels = {
|
| 682 |
+
"blank_label": hparams["blank_index"],
|
| 683 |
+
"unk_label": hparams["unk_index"]
|
| 684 |
+
}
|
| 685 |
+
label_encoder.load_or_create(
|
| 686 |
+
path=lab_enc_file,
|
| 687 |
+
from_didatasets=[[]],
|
| 688 |
+
output_key="char_list",
|
| 689 |
+
special_labels=special_labels,
|
| 690 |
+
sequence_input=True,
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
|
| 695 |
+
labels = [""] + labels[1:-1] + ["1"]
|
| 696 |
+
if hparams["language_modelling"]:
|
| 697 |
+
decoder = build_ctcdecoder(
|
| 698 |
+
labels,
|
| 699 |
+
kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file
|
| 700 |
+
alpha=0.5, # tuned on a val set
|
| 701 |
+
beta=1, # tuned on a val set
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
run_opts["device"]="cpu"
|
| 707 |
+
|
| 708 |
+
mixer = Mixer(
|
| 709 |
+
modules=hparams["modules"],
|
| 710 |
+
hparams=hparams,
|
| 711 |
+
run_opts=run_opts,
|
| 712 |
+
checkpointer=hparams["checkpointer"],
|
| 713 |
+
)
|
| 714 |
+
mixer.tokenizer = label_encoder
|
| 715 |
+
mixer.device = "cpu"
|
| 716 |
+
mixer.checkpointer.recover_if_possible()
|
| 717 |
+
mixer.modules.eval()
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
# We dynamicaly add the tokenizer to our brain class.
|
| 724 |
+
# NB: This tokenizer corresponds to the one used for the LM!!
|
| 725 |
+
|
| 726 |
+
decoder = build_ctcdecoder(
|
| 727 |
+
labels,
|
| 728 |
+
kenlm_model_path= "arpas/everything.arpa", # either .arpa or .bin file
|
| 729 |
+
alpha=0.5, # tuned on a val set
|
| 730 |
+
beta=1, # tuned on a val set
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
device = "cpu"
|
| 736 |
+
mixer.device= "cpu"
|
| 737 |
+
mixer.modules.to("cpu")
|
| 738 |
+
|
| 739 |
+
from enum import Enum, auto
|
| 740 |
+
class Stage(Enum):
|
| 741 |
+
TRAIN = auto()
|
| 742 |
+
VALID = auto()
|
| 743 |
+
TEST = auto()
|
| 744 |
+
|
| 745 |
+
asr_brain.on_evaluate_start()
|
| 746 |
+
asr_brain.modules.eval()
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
import gradio as gr
|
| 750 |
+
|
| 751 |
+
def treat_wav_file(file_mic,file_upload ,asr=mixer, device="cpu") :
|
| 752 |
+
if (file_mic is not None) and (file_upload is not None):
|
| 753 |
+
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
| 754 |
+
wav = file_mic
|
| 755 |
+
elif (file_mic is None) and (file_upload is None):
|
| 756 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
| 757 |
+
elif file_mic is not None:
|
| 758 |
+
wav = file_mic
|
| 759 |
+
else:
|
| 760 |
+
wav = file_upload
|
| 761 |
+
sig, sr = torchaudio.load(wav)
|
| 762 |
+
tensor_wav = sig.to(device)
|
| 763 |
+
resampled = torchaudio.functional.resample( tensor_wav, sr, 16000)
|
| 764 |
+
sentence = asr.treat_wav(resampled)
|
| 765 |
+
return sentence
|
| 766 |
+
|
| 767 |
+
gr.Interface(
|
| 768 |
+
fn=treat_wav_file,
|
| 769 |
+
inputs=[gr.Audio(source="microphone", type='filepath', label = "record", optional = True),
|
| 770 |
+
gr.Audio(source="upload", type='filepath', label="filein", optional=True)]
|
| 771 |
+
,outputs="text").launch()
|
| 772 |
+
|
results/non_semi_final_stac/env.log
ADDED
|
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SpeechBrain system description
|
| 2 |
+
==============================
|
| 3 |
+
Python version:
|
| 4 |
+
3.8.5 (default, Sep 4 2020, 07:30:14)
|
| 5 |
+
[GCC 7.3.0]
|
| 6 |
+
==============================
|
| 7 |
+
Installed Python packages:
|
| 8 |
+
abkhazia==1.0
|
| 9 |
+
absl-py==0.11.0
|
| 10 |
+
aiofiles==23.2.1
|
| 11 |
+
aiohttp==3.8.0
|
| 12 |
+
aiosignal==1.2.0
|
| 13 |
+
alabaster==0.7.12
|
| 14 |
+
alembic==1.7.4
|
| 15 |
+
altair==4.2.0
|
| 16 |
+
altgraph==0.17
|
| 17 |
+
antlr4-python3-runtime==4.9.3
|
| 18 |
+
anyio==3.6.2
|
| 19 |
+
appdirs==1.4.4
|
| 20 |
+
argcomplete==1.12.2
|
| 21 |
+
argon2-cffi==20.1.0
|
| 22 |
+
arrow==1.2.3
|
| 23 |
+
asgiref==3.6.0
|
| 24 |
+
asteroid-filterbanks==0.4.0
|
| 25 |
+
astunparse==1.6.3
|
| 26 |
+
async-generator==1.10
|
| 27 |
+
async-timeout==4.0.0
|
| 28 |
+
attrdict==2.0.1
|
| 29 |
+
attrs==20.3.0
|
| 30 |
+
audeer==1.16.0
|
| 31 |
+
audformat==0.11.5
|
| 32 |
+
audinterface==0.7.0
|
| 33 |
+
audiofile==1.0.0
|
| 34 |
+
audiomentations==0.25.0
|
| 35 |
+
audioread==2.1.9
|
| 36 |
+
audobject==0.4.14
|
| 37 |
+
audresample==0.1.6
|
| 38 |
+
-e git+https://github.com/facebookresearch/WavAugment.git@54afcdb00ccc852c2f030f239f8532c9562b550e#egg=augment
|
| 39 |
+
autopage==0.4.0
|
| 40 |
+
Babel==2.9.0
|
| 41 |
+
backcall==0.2.0
|
| 42 |
+
backports.cached-property==1.0.2
|
| 43 |
+
beautifulsoup4==4.10.0
|
| 44 |
+
black==19.10b0
|
| 45 |
+
bleach==3.3.0
|
| 46 |
+
blessed==1.20.0
|
| 47 |
+
boto3==1.20.2
|
| 48 |
+
botocore==1.23.2
|
| 49 |
+
bpemb==0.3.4
|
| 50 |
+
braceexpand==0.1.7
|
| 51 |
+
cachetools==4.2.0
|
| 52 |
+
certifi @ file:///croot/certifi_1671487769961/work/certifi
|
| 53 |
+
cffi==1.14.3
|
| 54 |
+
cfgv==3.2.0
|
| 55 |
+
chardet==3.0.4
|
| 56 |
+
charset-normalizer==2.0.7
|
| 57 |
+
click==7.1.2
|
| 58 |
+
cliff==3.9.0
|
| 59 |
+
clldutils==3.5.4
|
| 60 |
+
cloudpickle==2.2.1
|
| 61 |
+
cmaes==0.8.2
|
| 62 |
+
cmake==3.18.4.post1
|
| 63 |
+
cmd2==2.2.0
|
| 64 |
+
colorama==0.4.4
|
| 65 |
+
colorlog==4.6.2
|
| 66 |
+
configparser==5.1.0
|
| 67 |
+
conllu==4.5.3
|
| 68 |
+
croniter==1.3.15
|
| 69 |
+
cryptography==38.0.4
|
| 70 |
+
csrgraph==0.1.28
|
| 71 |
+
csvw==1.8.1
|
| 72 |
+
cycler==0.10.0
|
| 73 |
+
Cython==0.29.21
|
| 74 |
+
dataclasses==0.6
|
| 75 |
+
dateutils==0.6.12
|
| 76 |
+
decorator==4.4.2
|
| 77 |
+
deepdiff==6.3.0
|
| 78 |
+
deepspeech==0.9.1
|
| 79 |
+
defusedxml==0.7.1
|
| 80 |
+
Deprecated==1.2.14
|
| 81 |
+
dill==0.3.3
|
| 82 |
+
Distance==0.1.3
|
| 83 |
+
distlib==0.3.1
|
| 84 |
+
Django==3.2.16
|
| 85 |
+
django-auditlog==2.2.1
|
| 86 |
+
django-filter==22.1
|
| 87 |
+
django-js-asset==1.2.2
|
| 88 |
+
django-mptt==0.14.0
|
| 89 |
+
djangorestframework==3.14.0
|
| 90 |
+
docker-pycreds==0.4.0
|
| 91 |
+
docopt==0.6.2
|
| 92 |
+
docutils==0.16
|
| 93 |
+
drf-excel==2.2.0
|
| 94 |
+
drf-flex-fields==1.0.0
|
| 95 |
+
drf-renderer-xlsx==0.4.1
|
| 96 |
+
easyocr==1.2.1
|
| 97 |
+
editdistance==0.6.0
|
| 98 |
+
einops==0.3.2
|
| 99 |
+
emoji==2.2.0
|
| 100 |
+
entrypoints==0.3
|
| 101 |
+
et-xmlfile==1.1.0
|
| 102 |
+
exceptiongroup==1.1.0
|
| 103 |
+
farasapy==0.0.14
|
| 104 |
+
fastapi==0.98.0
|
| 105 |
+
fastjsonschema==2.17.1
|
| 106 |
+
fasttext==0.9.2
|
| 107 |
+
ffmpeg-python==0.2.0
|
| 108 |
+
ffmpy==0.3.0
|
| 109 |
+
filelock==3.0.12
|
| 110 |
+
flair==0.12.2
|
| 111 |
+
flake8==3.7.9
|
| 112 |
+
flatbuffers==1.12
|
| 113 |
+
frozendict==2.0.7
|
| 114 |
+
frozenlist==1.2.0
|
| 115 |
+
fsspec==2021.11.0
|
| 116 |
+
ftfy==6.1.1
|
| 117 |
+
future==0.18.2
|
| 118 |
+
g2p-en==2.1.0
|
| 119 |
+
gast==0.3.3
|
| 120 |
+
gdown==4.4.0
|
| 121 |
+
gdrive==0.1.5
|
| 122 |
+
gensim==4.0.1
|
| 123 |
+
gitdb==4.0.9
|
| 124 |
+
GitPython==3.1.24
|
| 125 |
+
google-api-core==2.11.1
|
| 126 |
+
google-api-python-client==2.43.0
|
| 127 |
+
google-auth==1.24.0
|
| 128 |
+
google-auth-httplib2==0.1.0
|
| 129 |
+
google-auth-oauthlib==0.5.3
|
| 130 |
+
google-pasta==0.2.0
|
| 131 |
+
googleapis-common-protos==1.59.1
|
| 132 |
+
gradio==3.44.4
|
| 133 |
+
gradio-client==0.5.1
|
| 134 |
+
greenlet==1.1.2
|
| 135 |
+
grpcio==1.32.0
|
| 136 |
+
h11==0.14.0
|
| 137 |
+
h5features==1.3.2
|
| 138 |
+
h5py==2.10.0
|
| 139 |
+
hierarchy==0.4.0
|
| 140 |
+
hmmlearn==0.2.8
|
| 141 |
+
htk-io==0.5
|
| 142 |
+
httpcore==0.16.3
|
| 143 |
+
httplib2==0.22.0
|
| 144 |
+
httpx==0.23.3
|
| 145 |
+
huggingface-hub==0.15.1
|
| 146 |
+
hydra-colorlog==0.1.4
|
| 147 |
+
hydra-core==1.3.2
|
| 148 |
+
hyperopt==0.2.7
|
| 149 |
+
HyperPyYAML==1.1.0
|
| 150 |
+
hypothesis==6.61.2
|
| 151 |
+
identify==1.5.10
|
| 152 |
+
idna==2.10
|
| 153 |
+
imageio==2.9.0
|
| 154 |
+
imagesize==1.2.0
|
| 155 |
+
importlib-metadata==4.8.1
|
| 156 |
+
importlib-resources==5.2.2
|
| 157 |
+
inflect==5.3.0
|
| 158 |
+
inquirer==3.1.3
|
| 159 |
+
ipadic==1.0.0
|
| 160 |
+
ipyevents==2.0.1
|
| 161 |
+
ipykernel==5.3.4
|
| 162 |
+
ipython==7.19.0
|
| 163 |
+
ipython-genutils==0.2.0
|
| 164 |
+
ipywebrtc==0.6.0
|
| 165 |
+
ipywidgets==7.6.3
|
| 166 |
+
iso-639==0.4.5
|
| 167 |
+
isodate==0.6.0
|
| 168 |
+
isort==4.3.21
|
| 169 |
+
itsdangerous==2.1.2
|
| 170 |
+
Janome==0.5.0
|
| 171 |
+
jedi==0.17.2
|
| 172 |
+
jeepney==0.8.0
|
| 173 |
+
jieba==0.42.1
|
| 174 |
+
Jinja2==3.0.3
|
| 175 |
+
jiwer==2.2.0
|
| 176 |
+
jmespath==0.10.0
|
| 177 |
+
joblib==0.17.0
|
| 178 |
+
jsonschema==3.2.0
|
| 179 |
+
julius==0.2.7
|
| 180 |
+
jupyter-client==6.1.7
|
| 181 |
+
jupyter-core==4.7.0
|
| 182 |
+
jupyterlab-pygments==0.1.2
|
| 183 |
+
jupyterlab-widgets==1.0.0
|
| 184 |
+
kaitaistruct==0.9
|
| 185 |
+
kaldi-io==0.9.4
|
| 186 |
+
kaldi-python-io==1.2.2
|
| 187 |
+
kaldiio==2.17.2
|
| 188 |
+
kenlm @ https://github.com/kpu/kenlm/archive/master.zip
|
| 189 |
+
Keras-Preprocessing==1.1.2
|
| 190 |
+
kiwisolver==1.3.1
|
| 191 |
+
lang-trans==0.6.0
|
| 192 |
+
langdetect==1.0.9
|
| 193 |
+
latexcodec==2.0.1
|
| 194 |
+
ldap3==2.9.1
|
| 195 |
+
librosa==0.9.0
|
| 196 |
+
lightning-cloud==0.5.37
|
| 197 |
+
lightning-utilities==0.8.0
|
| 198 |
+
linkify-it-py==1.0.3
|
| 199 |
+
lit==16.0.6
|
| 200 |
+
llvmlite==0.35.0
|
| 201 |
+
lxml==4.9.0
|
| 202 |
+
Mako==1.1.5
|
| 203 |
+
Markdown==3.3.3
|
| 204 |
+
markdown-it-py==3.0.0
|
| 205 |
+
MarkupSafe==2.1.3
|
| 206 |
+
marshmallow==3.14.0
|
| 207 |
+
matplotlib==3.3.3
|
| 208 |
+
mccabe==0.6.1
|
| 209 |
+
mcd==0.4
|
| 210 |
+
mdit-py-plugins==0.3.3
|
| 211 |
+
mdurl==0.1.2
|
| 212 |
+
mecab-python3==1.0.3
|
| 213 |
+
megatron-lm==2.2.0
|
| 214 |
+
metrics==0.3.3
|
| 215 |
+
mido==1.2.10
|
| 216 |
+
mistune==0.8.4
|
| 217 |
+
more-itertools==8.6.0
|
| 218 |
+
mpld3==0.3
|
| 219 |
+
mpmath==1.2.1
|
| 220 |
+
multidict==5.2.0
|
| 221 |
+
multiprocess==0.70.11.1
|
| 222 |
+
nbclient==0.5.3
|
| 223 |
+
nbconvert==5.6.1
|
| 224 |
+
nbformat==5.9.0
|
| 225 |
+
NEMO==4.3.2
|
| 226 |
+
nemo-toolkit==1.4.0
|
| 227 |
+
nest-asyncio==1.5.1
|
| 228 |
+
networkx==2.8.8
|
| 229 |
+
nltk==3.2.4
|
| 230 |
+
nodeenv==1.5.0
|
| 231 |
+
normalize==2.0.2
|
| 232 |
+
notebook==6.3.0
|
| 233 |
+
numba==0.52.0
|
| 234 |
+
numpy==1.19.4
|
| 235 |
+
nvidia-cublas-cu11==11.10.3.66
|
| 236 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
| 237 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
| 238 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
| 239 |
+
nvidia-cudnn-cu11==8.5.0.96
|
| 240 |
+
nvidia-cufft-cu11==10.9.0.58
|
| 241 |
+
nvidia-curand-cu11==10.2.10.91
|
| 242 |
+
nvidia-cusolver-cu11==11.4.0.1
|
| 243 |
+
nvidia-cusparse-cu11==11.7.4.91
|
| 244 |
+
nvidia-nccl-cu11==2.14.3
|
| 245 |
+
nvidia-nvtx-cu11==11.7.91
|
| 246 |
+
oauthlib==3.1.0
|
| 247 |
+
omegaconf==2.3.0
|
| 248 |
+
onnx==1.10.2
|
| 249 |
+
OpenCC==1.1.2
|
| 250 |
+
opencv-python==4.4.0.46
|
| 251 |
+
openpyxl==3.0.9
|
| 252 |
+
opensmile==2.2.0
|
| 253 |
+
opt-einsum==3.3.0
|
| 254 |
+
optuna==2.10.0
|
| 255 |
+
ordered-set==4.1.0
|
| 256 |
+
orjson==3.8.4
|
| 257 |
+
oyaml==1.0
|
| 258 |
+
packaging==22.0
|
| 259 |
+
pandas==1.2.5
|
| 260 |
+
pandocfilters==1.4.3
|
| 261 |
+
pangu==4.0.6.1
|
| 262 |
+
parameterized==0.8.1
|
| 263 |
+
parso==0.7.1
|
| 264 |
+
pathlib2==2.3.7.post1
|
| 265 |
+
pathspec==0.5.5
|
| 266 |
+
pathtools==0.1.2
|
| 267 |
+
pbr==5.6.0
|
| 268 |
+
pefile==2019.4.18
|
| 269 |
+
pescador==2.1.0
|
| 270 |
+
pesq==0.0.3
|
| 271 |
+
pexpect==4.8.0
|
| 272 |
+
phonemizer==2.2.1
|
| 273 |
+
pickleshare==0.7.5
|
| 274 |
+
Pillow==9.3.0
|
| 275 |
+
pip-api==0.0.23
|
| 276 |
+
pipreqs==0.4.11
|
| 277 |
+
pluggy==0.13.1
|
| 278 |
+
pooch==1.3.0
|
| 279 |
+
portalocker==2.3.2
|
| 280 |
+
pptree==3.1
|
| 281 |
+
pre-commit==2.9.0
|
| 282 |
+
preprocessing==0.1.13
|
| 283 |
+
pretty-midi==0.2.9
|
| 284 |
+
prettytable==2.2.1
|
| 285 |
+
primePy==1.3
|
| 286 |
+
progressbar2==3.53.1
|
| 287 |
+
prometheus-client==0.10.1
|
| 288 |
+
promise==2.3
|
| 289 |
+
prompt-toolkit==3.0.8
|
| 290 |
+
protobuf==3.20.3
|
| 291 |
+
psutil==5.6.6
|
| 292 |
+
ptyprocess==0.6.0
|
| 293 |
+
py==1.9.0
|
| 294 |
+
py-espeak-ng==0.1.8
|
| 295 |
+
py4j==0.10.9.7
|
| 296 |
+
pyannote.audio==2.1.1
|
| 297 |
+
pyannote.core==4.5
|
| 298 |
+
pyannote.database==4.1.3
|
| 299 |
+
pyannote.metrics==3.2.1
|
| 300 |
+
pyannote.pipeline==2.3
|
| 301 |
+
pyannotebook==0.1.0.dev0
|
| 302 |
+
PyArabic==0.6.15
|
| 303 |
+
pyarrow==3.0.0
|
| 304 |
+
pyasn1==0.4.8
|
| 305 |
+
pyasn1-modules==0.2.8
|
| 306 |
+
pybind11==2.8.1
|
| 307 |
+
pybtex==0.24.0
|
| 308 |
+
pybtex-docutils==1.0.1
|
| 309 |
+
pycodestyle==2.5.0
|
| 310 |
+
pycparser==2.20
|
| 311 |
+
pycryptodome==3.16.0
|
| 312 |
+
pyctcdecode==0.4.0
|
| 313 |
+
pydantic==1.10.4
|
| 314 |
+
pyDeprecate==0.3.1
|
| 315 |
+
pydub==0.25.1
|
| 316 |
+
pyflakes==2.1.1
|
| 317 |
+
Pygments==2.15.1
|
| 318 |
+
pygtrie==2.5.0
|
| 319 |
+
PyJWT==2.7.0
|
| 320 |
+
pymodbus==2.5.3
|
| 321 |
+
pyparsing==2.4.7
|
| 322 |
+
pyperclip==1.8.2
|
| 323 |
+
pypinyin==0.43.0
|
| 324 |
+
pyrsistent==0.17.3
|
| 325 |
+
pyserial==3.5
|
| 326 |
+
PySocks==1.7.1
|
| 327 |
+
pystoi==0.3.3
|
| 328 |
+
pytest==5.4.1
|
| 329 |
+
pytest-runner==5.3.1
|
| 330 |
+
python-bidi==0.4.2
|
| 331 |
+
python-crfsuite==0.9.7
|
| 332 |
+
python-dateutil==2.8.2
|
| 333 |
+
python-editor==1.0.4
|
| 334 |
+
python-Levenshtein==0.12.2
|
| 335 |
+
python-multipart==0.0.5
|
| 336 |
+
python-utils==2.4.0
|
| 337 |
+
pytorch-lightning==1.6.5
|
| 338 |
+
pytorch-metric-learning==1.7.3
|
| 339 |
+
pytorch-revgrad==0.2.0
|
| 340 |
+
pytube==11.0.1
|
| 341 |
+
pytz==2022.6
|
| 342 |
+
PyWavelets==1.1.1
|
| 343 |
+
PyYAML==6.0
|
| 344 |
+
pyzmq==20.0.0
|
| 345 |
+
rapidfuzz==1.8.2
|
| 346 |
+
readchar==4.0.5
|
| 347 |
+
regex==2020.11.13
|
| 348 |
+
requests==2.28.1
|
| 349 |
+
requests-oauthlib==1.3.0
|
| 350 |
+
resampy==0.2.2
|
| 351 |
+
rfc3986==1.4.0
|
| 352 |
+
rich==13.4.2
|
| 353 |
+
richenum==1.3.1
|
| 354 |
+
rsa==4.7
|
| 355 |
+
ruamel.yaml==0.17.21
|
| 356 |
+
ruamel.yaml.clib==0.2.7
|
| 357 |
+
s3m==1.1.0
|
| 358 |
+
s3transfer==0.5.0
|
| 359 |
+
sacrebleu==2.0.0
|
| 360 |
+
sacremoses==0.0.44
|
| 361 |
+
safetensors==0.3.1
|
| 362 |
+
scikit-image==0.18.1
|
| 363 |
+
scikit-learn==0.23.2
|
| 364 |
+
scipy==1.5.4
|
| 365 |
+
-e git+https://github.com/sanghack81/SDCIT@00d060dde733fde9345154a494f81e97fb395ca7#egg=SDCIT
|
| 366 |
+
seaborn==0.11.1
|
| 367 |
+
SecretStorage==3.3.3
|
| 368 |
+
segments==2.1.3
|
| 369 |
+
segtok==1.5.11
|
| 370 |
+
semantic-version==2.10.0
|
| 371 |
+
semver==2.13.0
|
| 372 |
+
Send2Trash==1.5.0
|
| 373 |
+
sentencepiece==0.1.99
|
| 374 |
+
sentry-sdk==1.4.3
|
| 375 |
+
shellingham==1.4.0
|
| 376 |
+
shortuuid==1.0.7
|
| 377 |
+
SIDEKIT==1.3.8.5.2
|
| 378 |
+
simplejson==3.17.5
|
| 379 |
+
singledispatchmethod==1.0
|
| 380 |
+
six==1.15.0
|
| 381 |
+
smart-open==5.0.0
|
| 382 |
+
smmap==5.0.0
|
| 383 |
+
sniffio==1.3.0
|
| 384 |
+
snowballstemmer==2.0.0
|
| 385 |
+
sortedcollections==2.1.0
|
| 386 |
+
sortedcontainers==2.4.0
|
| 387 |
+
sounddevice==0.4.5
|
| 388 |
+
SoundFile==0.10.3.post1
|
| 389 |
+
soupsieve==2.3
|
| 390 |
+
sox==1.4.1
|
| 391 |
+
sparsemax==0.1.9
|
| 392 |
+
speechbrain==0.5.14
|
| 393 |
+
sphfile==1.0.3
|
| 394 |
+
Sphinx==3.3.1
|
| 395 |
+
sphinx-rtd-theme==0.2.4
|
| 396 |
+
sphinxcontrib-applehelp==1.0.2
|
| 397 |
+
sphinxcontrib-bibtex==2.4.1
|
| 398 |
+
sphinxcontrib-devhelp==1.0.2
|
| 399 |
+
sphinxcontrib-htmlhelp==1.0.3
|
| 400 |
+
sphinxcontrib-jsmath==1.0.1
|
| 401 |
+
sphinxcontrib-qthelp==1.0.3
|
| 402 |
+
sphinxcontrib-serializinghtml==1.1.4
|
| 403 |
+
SQLAlchemy==1.4.25
|
| 404 |
+
sqlitedict==2.1.0
|
| 405 |
+
sqlparse==0.4.2
|
| 406 |
+
stanza==1.4.2
|
| 407 |
+
starlette==0.27.0
|
| 408 |
+
starsessions==1.3.0
|
| 409 |
+
stevedore==3.4.0
|
| 410 |
+
subprocess32==3.5.4
|
| 411 |
+
sympy==1.9
|
| 412 |
+
tabulate==0.8.9
|
| 413 |
+
tensorboard==2.4.0
|
| 414 |
+
tensorboard-plugin-wit==1.7.0
|
| 415 |
+
tensorboardX==2.6.1
|
| 416 |
+
tensorflow==2.4.0
|
| 417 |
+
tensorflow-estimator==2.4.0
|
| 418 |
+
termcolor==1.1.0
|
| 419 |
+
terminado==0.9.4
|
| 420 |
+
testpath==0.4.4
|
| 421 |
+
threadpoolctl==2.1.0
|
| 422 |
+
tifffile==2020.12.8
|
| 423 |
+
tikzplotlib==0.9.8
|
| 424 |
+
tinycss2==1.2.1
|
| 425 |
+
tkseem==0.0.3
|
| 426 |
+
tokenizers==0.13.3
|
| 427 |
+
toml==0.10.2
|
| 428 |
+
toolz==0.12.0
|
| 429 |
+
torch==1.13.1
|
| 430 |
+
torch-audiomentations==0.11.0
|
| 431 |
+
torch-pitch-shift==1.2.4
|
| 432 |
+
torch-stft==0.1.4
|
| 433 |
+
torchaudio==0.13.1
|
| 434 |
+
torchmetrics==0.11.4
|
| 435 |
+
torchvision==0.14.1
|
| 436 |
+
tornado==6.1
|
| 437 |
+
tqdm==4.61.1
|
| 438 |
+
trackrip==1.2.1
|
| 439 |
+
traitlets==5.9.0
|
| 440 |
+
transformer-smaller-training-vocab==0.3.1
|
| 441 |
+
transformers==4.30.2
|
| 442 |
+
triton==2.0.0
|
| 443 |
+
typed-ast==1.4.1
|
| 444 |
+
typer==0.4.0
|
| 445 |
+
typing-extensions==4.4.0
|
| 446 |
+
uc-micro-py==1.0.1
|
| 447 |
+
Unidecode==1.3.2
|
| 448 |
+
uritemplate==3.0.1
|
| 449 |
+
urllib3==1.26.2
|
| 450 |
+
uvicorn==0.20.0
|
| 451 |
+
versioneer==0.28
|
| 452 |
+
virtualenv==20.2.1
|
| 453 |
+
wandb==0.12.6
|
| 454 |
+
wcwidth==0.2.5
|
| 455 |
+
webdataset==0.1.62
|
| 456 |
+
webencodings==0.5.1
|
| 457 |
+
websocket-client==1.6.1
|
| 458 |
+
websockets==10.4
|
| 459 |
+
Werkzeug==1.0.1
|
| 460 |
+
wget==3.2
|
| 461 |
+
widgetsnbextension==3.5.1
|
| 462 |
+
Wikipedia-API==0.6.0
|
| 463 |
+
wordninja==2.0.0
|
| 464 |
+
wrapt==1.12.1
|
| 465 |
+
xmltodict==0.13.0
|
| 466 |
+
xxhash==2.0.0
|
| 467 |
+
yamllint==1.23.0
|
| 468 |
+
yarg==0.1.9
|
| 469 |
+
yarl==1.7.2
|
| 470 |
+
yaspin==2.1.0
|
| 471 |
+
youtokentome==1.0.6
|
| 472 |
+
youtube-dl==2021.6.6
|
| 473 |
+
zipp==3.6.0
|
| 474 |
+
==============================
|
| 475 |
+
Git revision:
|
| 476 |
+
be9098b
|
| 477 |
+
==============================
|
| 478 |
+
CUDA version:
|
| 479 |
+
11.7
|
results/non_semi_final_stac/hyperparams.yaml
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
# Generated 2023-09-
|
| 2 |
-
# /home/salah/
|
| 3 |
# yamllint disable
|
| 4 |
# Generated 2023-08-03 from:
|
| 5 |
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml
|
|
|
|
| 1 |
+
# Generated 2023-09-25 from:
|
| 2 |
+
# /home/salah/Code-Switched-Tunisian-SpeechToText/cs.yaml
|
| 3 |
# yamllint disable
|
| 4 |
# Generated 2023-08-03 from:
|
| 5 |
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml
|
results/non_semi_final_stac/log.txt
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|