Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image, ImageEnhance
|
| 3 |
+
import statistics
|
| 4 |
+
import os
|
| 5 |
+
import string
|
| 6 |
+
from collections import Counter
|
| 7 |
+
from itertools import tee, count
|
| 8 |
+
# import TDTSR
|
| 9 |
+
import pytesseract
|
| 10 |
+
from pytesseract import Output
|
| 11 |
+
import json
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
import cv2
|
| 15 |
+
import numpy as np
|
| 16 |
+
# from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 17 |
+
# from cv2 import dnn_superres
|
| 18 |
+
from transformers import DetrFeatureExtractor
|
| 19 |
+
from transformers import DetrForObjectDetection
|
| 20 |
+
import torch
|
| 21 |
+
import asyncio
|
| 22 |
+
# pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 26 |
+
st.set_page_config(layout='wide')
|
| 27 |
+
st.title("Table Detection and Table Structure Recognition")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def PIL_to_cv(pil_img):
|
| 31 |
+
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 32 |
+
|
| 33 |
+
def cv_to_PIL(cv_img):
|
| 34 |
+
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
async def pytess(cell_pil_img):
|
| 38 |
+
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces')['text']).strip()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# def super_res(pil_img):
|
| 42 |
+
# '''
|
| 43 |
+
# Useful for low-res docs
|
| 44 |
+
# '''
|
| 45 |
+
# requires opencv-contrib-python installed without the opencv-python
|
| 46 |
+
# sr = dnn_superres.DnnSuperResImpl_create()
|
| 47 |
+
# image = PIL_to_cv(pil_img)
|
| 48 |
+
# model_path = "/data/Salman/TRD/code/table-transformer/transformers/LapSRN_x2.pb"
|
| 49 |
+
# model_name = 'lapsrn'
|
| 50 |
+
# model_scale = 2
|
| 51 |
+
# sr.readModel(model_path)
|
| 52 |
+
# sr.setModel(model_name, model_scale)
|
| 53 |
+
# final_img = sr.upsample(image)
|
| 54 |
+
# final_img = cv_to_PIL(final_img)
|
| 55 |
+
|
| 56 |
+
# return final_img
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def sharpen_image(pil_img):
|
| 60 |
+
|
| 61 |
+
img = PIL_to_cv(pil_img)
|
| 62 |
+
sharpen_kernel = np.array([[-1, -1, -1],
|
| 63 |
+
[-1, 9, -1],
|
| 64 |
+
[-1, -1, -1]])
|
| 65 |
+
|
| 66 |
+
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
|
| 67 |
+
pil_img = cv_to_PIL(sharpen)
|
| 68 |
+
return pil_img
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def uniquify(seq, suffs = count(1)):
|
| 72 |
+
"""Make all the items unique by adding a suffix (1, 2, etc).
|
| 73 |
+
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
| 74 |
+
`seq` is mutable sequence of strings.
|
| 75 |
+
`suffs` is an optional alternative suffix iterable.
|
| 76 |
+
"""
|
| 77 |
+
not_unique = [k for k,v in Counter(seq).items() if v>1]
|
| 78 |
+
|
| 79 |
+
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
| 80 |
+
for idx,s in enumerate(seq):
|
| 81 |
+
try:
|
| 82 |
+
suffix = str(next(suff_gens[s]))
|
| 83 |
+
except KeyError:
|
| 84 |
+
continue
|
| 85 |
+
else:
|
| 86 |
+
seq[idx] += suffix
|
| 87 |
+
|
| 88 |
+
return seq
|
| 89 |
+
|
| 90 |
+
def binarizeBlur_image(pil_img):
|
| 91 |
+
image = PIL_to_cv(pil_img)
|
| 92 |
+
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1]
|
| 93 |
+
|
| 94 |
+
result = cv2.GaussianBlur(thresh, (5,5), 0)
|
| 95 |
+
result = 255 - result
|
| 96 |
+
return cv_to_PIL(result)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def td_postprocess(pil_img):
|
| 101 |
+
'''
|
| 102 |
+
Removes gray background from tables
|
| 103 |
+
'''
|
| 104 |
+
img = PIL_to_cv(pil_img)
|
| 105 |
+
|
| 106 |
+
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
| 107 |
+
mask = cv2.inRange(hsv, (0, 0, 100), (255, 5, 255)) # (0, 0, 100), (255, 5, 255)
|
| 108 |
+
nzmask = cv2.inRange(hsv, (0, 0, 5), (255, 255, 255)) # (0, 0, 5), (255, 255, 255))
|
| 109 |
+
nzmask = cv2.erode(nzmask, np.ones((3,3))) # (3,3)
|
| 110 |
+
mask = mask & nzmask
|
| 111 |
+
|
| 112 |
+
new_img = img.copy()
|
| 113 |
+
new_img[np.where(mask)] = 255
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
return cv_to_PIL(new_img)
|
| 117 |
+
|
| 118 |
+
def super_res(pil_img):
|
| 119 |
+
# requires opencv-contrib-python installed without the opencv-python
|
| 120 |
+
sr = dnn_superres.DnnSuperResImpl_create()
|
| 121 |
+
image = PIL_to_cv(pil_img)
|
| 122 |
+
model_path = "./LapSRN_x8.pb"
|
| 123 |
+
model_name = model_path.split('/')[1].split('_')[0].lower()
|
| 124 |
+
model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
|
| 125 |
+
|
| 126 |
+
sr.readModel(model_path)
|
| 127 |
+
sr.setModel(model_name, model_scale)
|
| 128 |
+
final_img = sr.upsample(image)
|
| 129 |
+
final_img = cv_to_PIL(final_img)
|
| 130 |
+
|
| 131 |
+
return final_img
|
| 132 |
+
|
| 133 |
+
def table_detector(image, THRESHOLD_PROBA):
|
| 134 |
+
'''
|
| 135 |
+
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
| 136 |
+
|
| 137 |
+
'''
|
| 138 |
+
|
| 139 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
| 140 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
| 141 |
+
|
| 142 |
+
model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-detection")
|
| 143 |
+
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
outputs = model(**encoding)
|
| 146 |
+
|
| 147 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
| 148 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
| 149 |
+
|
| 150 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 151 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 152 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
| 153 |
+
|
| 154 |
+
return (model, probas[keep], bboxes_scaled)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def table_struct_recog(image, THRESHOLD_PROBA):
|
| 158 |
+
'''
|
| 159 |
+
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
| 160 |
+
'''
|
| 161 |
+
|
| 162 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
| 163 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
| 164 |
+
|
| 165 |
+
model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-structure-recognition")
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
outputs = model(**encoding)
|
| 168 |
+
|
| 169 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
| 170 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
| 171 |
+
|
| 172 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 173 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 174 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
| 175 |
+
|
| 176 |
+
return (model, probas[keep], bboxes_scaled)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class TableExtractionPipeline():
|
| 183 |
+
|
| 184 |
+
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
| 185 |
+
|
| 186 |
+
# colors = ["red", "blue", "green", "red", "red", "red"]
|
| 187 |
+
|
| 188 |
+
def add_padding(self, pil_img, top, right, bottom, left, color=(255,255,255)):
|
| 189 |
+
'''
|
| 190 |
+
Image padding as part of TSR pre-processing to prevent missing table edges
|
| 191 |
+
'''
|
| 192 |
+
width, height = pil_img.size
|
| 193 |
+
new_width = width + right + left
|
| 194 |
+
new_height = height + top + bottom
|
| 195 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
| 196 |
+
result.paste(pil_img, (left, top))
|
| 197 |
+
return result
|
| 198 |
+
|
| 199 |
+
def plot_results_detection(self, c1, model, pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
| 200 |
+
'''
|
| 201 |
+
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
| 202 |
+
'''
|
| 203 |
+
# st.write('img_obj')
|
| 204 |
+
# st.write(pil_img)
|
| 205 |
+
plt.imshow(pil_img)
|
| 206 |
+
ax = plt.gca()
|
| 207 |
+
|
| 208 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 209 |
+
cl = p.argmax()
|
| 210 |
+
xmin, ymin, xmax, ymax = xmin-delta_xmin, ymin-delta_ymin, xmax+delta_xmax, ymax+delta_ymax
|
| 211 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color='red', linewidth=3))
|
| 212 |
+
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
|
| 213 |
+
ax.text(xmin-20, ymin-50, text, fontsize=10,bbox=dict(facecolor='yellow', alpha=0.5))
|
| 214 |
+
plt.axis('off')
|
| 215 |
+
c1.pyplot()
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
| 219 |
+
'''
|
| 220 |
+
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
| 221 |
+
'''
|
| 222 |
+
cropped_img_list = []
|
| 223 |
+
|
| 224 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 225 |
+
|
| 226 |
+
xmin, ymin, xmax, ymax = xmin-delta_xmin, ymin-delta_ymin, xmax+delta_xmax, ymax+delta_ymax
|
| 227 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 228 |
+
cropped_img_list.append(cropped_img)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
return cropped_img_list
|
| 232 |
+
|
| 233 |
+
def generate_structure(self, c2, model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
|
| 234 |
+
'''
|
| 235 |
+
Co-ordinates are adjusted here by 3 'pixels'
|
| 236 |
+
To plot table pillow image and the TSR bounding boxes on the table
|
| 237 |
+
'''
|
| 238 |
+
# st.write('img_obj')
|
| 239 |
+
# st.write(pil_img)
|
| 240 |
+
plt.figure(figsize=(32,20))
|
| 241 |
+
plt.imshow(pil_img)
|
| 242 |
+
ax = plt.gca()
|
| 243 |
+
rows = {}
|
| 244 |
+
cols = {}
|
| 245 |
+
idx = 0
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 249 |
+
|
| 250 |
+
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
|
| 251 |
+
cl = p.argmax()
|
| 252 |
+
class_text = model.config.id2label[cl.item()]
|
| 253 |
+
text = f'{class_text}: {p[cl]:0.2f}'
|
| 254 |
+
# or (class_text == 'table column')
|
| 255 |
+
if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
|
| 256 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=self.colors[cl.item()], linewidth=2))
|
| 257 |
+
ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
|
| 258 |
+
|
| 259 |
+
if class_text == 'table row':
|
| 260 |
+
rows['table row.'+str(idx)] = (xmin, ymin-expand_rowcol_bbox_top, xmax, ymax+expand_rowcol_bbox_bottom)
|
| 261 |
+
if class_text == 'table column':
|
| 262 |
+
cols['table column.'+str(idx)] = (xmin, ymin-expand_rowcol_bbox_top, xmax, ymax+expand_rowcol_bbox_bottom)
|
| 263 |
+
|
| 264 |
+
idx += 1
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
plt.axis('on')
|
| 268 |
+
c2.pyplot()
|
| 269 |
+
return rows, cols
|
| 270 |
+
|
| 271 |
+
def sort_table_featuresv2(self, rows:dict, cols:dict):
|
| 272 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
| 273 |
+
rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])}
|
| 274 |
+
cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
|
| 275 |
+
|
| 276 |
+
return rows_, cols_
|
| 277 |
+
|
| 278 |
+
def individual_table_featuresv2(self, pil_img, rows:dict, cols:dict):
|
| 279 |
+
|
| 280 |
+
for k, v in rows.items():
|
| 281 |
+
xmin, ymin, xmax, ymax = v
|
| 282 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 283 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 284 |
+
|
| 285 |
+
for k, v in cols.items():
|
| 286 |
+
xmin, ymin, xmax, ymax = v
|
| 287 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 288 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 289 |
+
|
| 290 |
+
return rows, cols
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def object_to_cellsv2(self, master_row:dict, cols:dict, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left):
|
| 294 |
+
'''Removes redundant bbox for rows&columns and divides each row into cells from columns
|
| 295 |
+
Args:
|
| 296 |
+
|
| 297 |
+
Returns:
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
'''
|
| 301 |
+
cells_img = {}
|
| 302 |
+
header_idx = 0
|
| 303 |
+
row_idx = 0
|
| 304 |
+
previous_xmax_col = 0
|
| 305 |
+
new_cols = {}
|
| 306 |
+
new_master_row = {}
|
| 307 |
+
previous_ymin_row = 0
|
| 308 |
+
new_cols = cols
|
| 309 |
+
new_master_row = master_row
|
| 310 |
+
## Below 2 for loops remove redundant bounding boxes ###
|
| 311 |
+
for k_col, v_col in cols.items():
|
| 312 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
| 313 |
+
if (np.isclose(previous_xmax_col, xmax_col, atol=50)) or (xmin_col >= xmax_col):
|
| 314 |
+
print('Found a column with double bbox')
|
| 315 |
+
continue
|
| 316 |
+
previous_xmax_col = xmax_col
|
| 317 |
+
new_cols[k_col] = v_col
|
| 318 |
+
|
| 319 |
+
for k_row, v_row in master_row.items():
|
| 320 |
+
_, ymin_row, _, ymax_row, row_img = v_row
|
| 321 |
+
if (np.isclose(previous_ymin_row, ymin_row, atol=50)) or (ymin_row >= ymax_row):
|
| 322 |
+
print('Found a row with double bbox')
|
| 323 |
+
continue
|
| 324 |
+
previous_ymin_row = ymin_row
|
| 325 |
+
new_master_row[k_row] = v_row
|
| 326 |
+
######################################################
|
| 327 |
+
for k_row, v_row in new_master_row.items():
|
| 328 |
+
|
| 329 |
+
_, _, _, _, row_img = v_row
|
| 330 |
+
xmax, ymax = row_img.size
|
| 331 |
+
xa, ya, xb, yb = 0, 0, 0, ymax
|
| 332 |
+
row_img_list = []
|
| 333 |
+
# plt.imshow(row_img)
|
| 334 |
+
# st.pyplot()
|
| 335 |
+
for idx, kv in enumerate(new_cols.items()):
|
| 336 |
+
k_col, v_col = kv
|
| 337 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
| 338 |
+
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
|
| 339 |
+
# plt.imshow(col_img)
|
| 340 |
+
# st.pyplot()
|
| 341 |
+
# xa + 3 : to remove borders on the left side of the cropped cell
|
| 342 |
+
# yb = 3: to remove row information from the above row of the cropped cell
|
| 343 |
+
# xb - 3: to remove borders on the right side of the cropped cell
|
| 344 |
+
xa = xmin_col
|
| 345 |
+
xb = xmax_col
|
| 346 |
+
if idx == 0:
|
| 347 |
+
xa = 0
|
| 348 |
+
if idx == len(new_cols)-1:
|
| 349 |
+
xb = xmax
|
| 350 |
+
xa, ya, xb, yb = xa, ya, xb, yb
|
| 351 |
+
|
| 352 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
| 353 |
+
row_img_list.append(row_img_cropped)
|
| 354 |
+
|
| 355 |
+
cells_img[k_row+'.'+str(row_idx)] = row_img_list
|
| 356 |
+
row_idx += 1
|
| 357 |
+
|
| 358 |
+
return cells_img, len(new_cols), len(new_master_row)-1
|
| 359 |
+
|
| 360 |
+
def clean_dataframe(self, df):
|
| 361 |
+
'''
|
| 362 |
+
Remove irrelevant symbols that appear with tesseractOCR
|
| 363 |
+
'''
|
| 364 |
+
# df.columns = [col.replace('|', '') for col in df.columns]
|
| 365 |
+
|
| 366 |
+
for col in df.columns:
|
| 367 |
+
|
| 368 |
+
df[col]=df[col].str.replace("'", '', regex=True)
|
| 369 |
+
df[col]=df[col].str.replace('"', '', regex=True)
|
| 370 |
+
df[col]=df[col].str.replace(']', '', regex=True)
|
| 371 |
+
df[col]=df[col].str.replace('[', '', regex=True)
|
| 372 |
+
df[col]=df[col].str.replace('{', '', regex=True)
|
| 373 |
+
df[col]=df[col].str.replace('}', '', regex=True)
|
| 374 |
+
return df
|
| 375 |
+
|
| 376 |
+
@st.cache
|
| 377 |
+
def convert_df(self, df):
|
| 378 |
+
return df.to_csv().encode('utf-8')
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def create_dataframe(self, c3, cells_pytess_result:list, max_cols:int, max_rows:int):
|
| 382 |
+
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe
|
| 383 |
+
Args:
|
| 384 |
+
cells_pytess_result: list of strings, each element representing a cell in a table
|
| 385 |
+
max_cols, max_rows: number of columns and rows
|
| 386 |
+
Returns:
|
| 387 |
+
dataframe : final dataframe after all pre-processing
|
| 388 |
+
'''
|
| 389 |
+
|
| 390 |
+
headers = cells_pytess_result[:max_cols]
|
| 391 |
+
new_headers = uniquify(headers, (f' {x!s}' for x in string.ascii_lowercase))
|
| 392 |
+
counter = 0
|
| 393 |
+
|
| 394 |
+
cells_list = cells_pytess_result[max_cols:]
|
| 395 |
+
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
|
| 396 |
+
|
| 397 |
+
cell_idx = 0
|
| 398 |
+
for nrows in range(max_rows):
|
| 399 |
+
for ncols in range(max_cols):
|
| 400 |
+
df.iat[nrows, ncols] = str(cells_list[cell_idx])
|
| 401 |
+
cell_idx += 1
|
| 402 |
+
|
| 403 |
+
## To check if there are duplicate headers if result of uniquify+col == col
|
| 404 |
+
## This check removes headers when all headers are empty or if median of header word count is less than 6
|
| 405 |
+
for x, col in zip(string.ascii_lowercase, new_headers):
|
| 406 |
+
if f' {x!s}' == col:
|
| 407 |
+
counter += 1
|
| 408 |
+
header_char_count = [len(col) for col in new_headers]
|
| 409 |
+
|
| 410 |
+
if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
|
| 411 |
+
df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
|
| 412 |
+
df = df.iloc[1:,:]
|
| 413 |
+
|
| 414 |
+
df = self.clean_dataframe(df)
|
| 415 |
+
|
| 416 |
+
c3.dataframe(df)
|
| 417 |
+
csv = self.convert_df(df)
|
| 418 |
+
c3.download_button("Download table", csv, "file.csv", "text/csv", key='download-csv')
|
| 419 |
+
|
| 420 |
+
return df
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
async def start_process(self, image_path:str, TD_THRESHOLD, TSR_THRESHOLD, padd_top, padd_left, padd_bottom, padd_right, delta_xmin, delta_ymin, delta_xmax, delta_ymax, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
|
| 428 |
+
'''
|
| 429 |
+
Initiates process of generating pandas dataframes from raw pdf-page images
|
| 430 |
+
|
| 431 |
+
'''
|
| 432 |
+
image = Image.open(image_path).convert("RGB")
|
| 433 |
+
model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD)
|
| 434 |
+
|
| 435 |
+
if bboxes_scaled.nelement() == 0:
|
| 436 |
+
print('No table found in the pdf-page image'+image_path.split('/')[-1])
|
| 437 |
+
return ''
|
| 438 |
+
|
| 439 |
+
# try:
|
| 440 |
+
# st.write('Document: '+image_path.split('/')[-1])
|
| 441 |
+
c1, c2, c3 = st.columns((1,1,1))
|
| 442 |
+
|
| 443 |
+
self.plot_results_detection(c1, model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
|
| 444 |
+
cropped_img_list = self.crop_tables(image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
|
| 445 |
+
|
| 446 |
+
for unpadded_table in cropped_img_list:
|
| 447 |
+
|
| 448 |
+
table = self.add_padding(unpadded_table, padd_top, padd_right, padd_bottom, padd_left)
|
| 449 |
+
# table = super_res(table)
|
| 450 |
+
# table = binarizeBlur_image(table)
|
| 451 |
+
# table = sharpen_image(table) # Test sharpen image next
|
| 452 |
+
# table = td_postprocess(table)
|
| 453 |
+
|
| 454 |
+
model, probas, bboxes_scaled = table_struct_recog(table, THRESHOLD_PROBA=TSR_THRESHOLD)
|
| 455 |
+
rows, cols = self.generate_structure(c2, model, table, probas, bboxes_scaled, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom)
|
| 456 |
+
# st.write(len(rows), len(cols))
|
| 457 |
+
rows, cols = self.sort_table_featuresv2(rows, cols)
|
| 458 |
+
master_row, cols = self.individual_table_featuresv2(table, rows, cols)
|
| 459 |
+
|
| 460 |
+
cells_img, max_cols, max_rows = self.object_to_cellsv2(master_row, cols, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left)
|
| 461 |
+
|
| 462 |
+
sequential_cell_img_list = []
|
| 463 |
+
for k, img_list in cells_img.items():
|
| 464 |
+
for img in img_list:
|
| 465 |
+
# img = super_res(img)
|
| 466 |
+
# img = sharpen_image(img) # Test sharpen image next
|
| 467 |
+
# img = binarizeBlur_image(img)
|
| 468 |
+
|
| 469 |
+
# plt.imshow(img)
|
| 470 |
+
# c3.pyplot()
|
| 471 |
+
sequential_cell_img_list.append(pytess(img))
|
| 472 |
+
|
| 473 |
+
cells_pytess_result = await asyncio.gather(*sequential_cell_img_list)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
self.create_dataframe(c3, cells_pytess_result, max_cols, max_rows)
|
| 477 |
+
# except:
|
| 478 |
+
# st.write('Either incorrectly identified table or no table, to debug remove try/except')
|
| 479 |
+
# break
|
| 480 |
+
# break
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
if __name__ == "__main__":
|
| 486 |
+
|
| 487 |
+
img_name = st.file_uploader("Upload an image with table(s)")
|
| 488 |
+
|
| 489 |
+
te = TableExtractionPipeline()
|
| 490 |
+
# for img in image_list:
|
| 491 |
+
if img_name is not None:
|
| 492 |
+
asyncio.run(te.start_process(img_name, TD_THRESHOLD=0.6, TSR_THRESHOLD=0.8, padd_top=20, padd_left=20, padd_bottom=20, padd_right=20, delta_xmin=0, delta_ymin=0, delta_xmax=0, delta_ymax=0, expand_rowcol_bbox_top=0, expand_rowcol_bbox_bottom=0))
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
|