Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,156 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import os
|
| 4 |
-
import TDTSR
|
| 5 |
-
import pytesseract
|
| 6 |
-
from pytesseract import Output
|
| 7 |
-
import pandas as pd
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
import cv2
|
| 10 |
-
import numpy as np
|
| 11 |
-
from cv2 import dnn_superres
|
| 12 |
-
|
| 13 |
-
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
|
| 14 |
-
|
| 15 |
-
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 16 |
-
st.set_page_config(layout='wide')
|
| 17 |
-
st.title("Table Detection and Table Structure Recognition")
|
| 18 |
-
|
| 19 |
-
c1, c2, c3 = st.columns((1,1,1))
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def PIL_to_cv(pil_img):
|
| 23 |
-
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 24 |
-
|
| 25 |
-
def cv_to_PIL(cv_img):
|
| 26 |
-
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
|
| 27 |
-
|
| 28 |
-
def pytess(cell_pil_img):
|
| 29 |
-
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='preserve_interword_spaces')['text']).strip()
|
| 30 |
-
|
| 31 |
-
def super_res(pil_img):
|
| 32 |
-
# requires opencv-contrib-python installed without the opencv-python
|
| 33 |
-
sr = dnn_superres.DnnSuperResImpl_create()
|
| 34 |
-
image = PIL_to_cv(pil_img)
|
| 35 |
-
model_path = "./LapSRN_x8.pb"
|
| 36 |
-
model_name = model_path.split('/')[1].split('_')[0].lower()
|
| 37 |
-
model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
|
| 38 |
-
|
| 39 |
-
sr.readModel(model_path)
|
| 40 |
-
sr.setModel(model_name, model_scale)
|
| 41 |
-
final_img = sr.upsample(image)
|
| 42 |
-
final_img = cv_to_PIL(final_img)
|
| 43 |
-
|
| 44 |
-
return final_img
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def sharpen_image(pil_img):
|
| 48 |
-
|
| 49 |
-
img = PIL_to_cv(pil_img)
|
| 50 |
-
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
| 51 |
-
# sharpen_kernel = np.array([[0, -1, 0],
|
| 52 |
-
# [-1, 5,-1],
|
| 53 |
-
# [0, -1, 0]])
|
| 54 |
-
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
|
| 55 |
-
pil_img = cv_to_PIL(sharpen)
|
| 56 |
-
return pil_img
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def preprocess_magic(pil_img):
|
| 60 |
-
|
| 61 |
-
cv_img = PIL_to_cv(pil_img)
|
| 62 |
-
grayscale_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
|
| 63 |
-
_, binary_image = cv2.threshold(grayscale_image, 0, 255, cv2.THRESH_OTSU)
|
| 64 |
-
|
| 65 |
-
count_white = np.sum(binary_image > 0)
|
| 66 |
-
count_black = np.sum(binary_image == 0)
|
| 67 |
-
|
| 68 |
-
if count_black > count_white:
|
| 69 |
-
binary_image = 255 - binary_image
|
| 70 |
-
|
| 71 |
-
black_text_white_background_image = binary_image
|
| 72 |
-
|
| 73 |
-
return cv_to_PIL(black_text_white_background_image)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
### main code:
|
| 77 |
-
for td_sample in os.listdir('D:/Jupyter/Multi-Type-TD-TSR/TD_samples/'):
|
| 78 |
-
|
| 79 |
-
image = Image.open("D:/Jupyter/Multi-Type-TD-TSR/TD_samples/"+td_sample).convert("RGB")
|
| 80 |
-
model, image, probas, bboxes_scaled = TDTSR.table_detector(image, THRESHOLD_PROBA=0.6)
|
| 81 |
-
TDTSR.plot_results_detection(c1, model, image, probas, bboxes_scaled)
|
| 82 |
-
cropped_img_list = TDTSR.plot_table_detection(c2, model, image, probas, bboxes_scaled)
|
| 83 |
-
|
| 84 |
-
for unpadded_table in cropped_img_list:
|
| 85 |
-
# table : pil_img
|
| 86 |
-
table = TDTSR.add_margin(unpadded_table)
|
| 87 |
-
model, image, probas, bboxes_scaled = TDTSR.table_struct_recog(table, THRESHOLD_PROBA=0.6)
|
| 88 |
-
|
| 89 |
-
# The try, except block of code below plots table header row and simple rows
|
| 90 |
-
try:
|
| 91 |
-
rows, cols = TDTSR.plot_structure(c3, model, image, probas, bboxes_scaled, class_to_show=0)
|
| 92 |
-
rows, cols = TDTSR.sort_table_featuresv2(rows, cols)
|
| 93 |
-
# headers, rows, cols are ordered dictionaries with 5th element value of tuple being pil_img
|
| 94 |
-
rows, cols = TDTSR.individual_table_featuresv2(table, rows, cols)
|
| 95 |
-
# TDTSR.plot_table_features(c1, header, row_header, rows, cols)
|
| 96 |
-
except Exception as printableException:
|
| 97 |
-
st.write(td_sample, ' terminated with exception:', printableException)
|
| 98 |
-
|
| 99 |
-
# master_row = TDTSR.master_row_set(header, row_header, rows, cols)
|
| 100 |
-
master_row = rows
|
| 101 |
-
|
| 102 |
-
# cells_img = TDTSR.object_to_cells(master_row, cols)
|
| 103 |
-
cells_img = TDTSR.object_to_cellsv2(master_row, cols)
|
| 104 |
-
|
| 105 |
-
headers = []
|
| 106 |
-
cells_list = []
|
| 107 |
-
# st.write(cells_img)
|
| 108 |
-
for n, kv in enumerate(cells_img.items()):
|
| 109 |
-
k, row_images = kv
|
| 110 |
-
if n == 0:
|
| 111 |
-
for idx, header in enumerate(row_images):
|
| 112 |
-
# plt.imshow(header)
|
| 113 |
-
# c2.pyplot()
|
| 114 |
-
# c2.write(pytess(header))
|
| 115 |
-
############################
|
| 116 |
-
SR_img = super_res(header)
|
| 117 |
-
# # w, h = SR_img.size
|
| 118 |
-
# # SR_img = SR_img.crop((0 ,0 ,w, h-60))
|
| 119 |
-
# plt.imshow(SR_img)
|
| 120 |
-
# c3.pyplot()
|
| 121 |
-
# c3.write(pytess(SR_img))
|
| 122 |
-
header_text = pytess(SR_img)
|
| 123 |
-
if header_text == '':
|
| 124 |
-
header_text = 'empty_col'+str(idx)
|
| 125 |
-
headers.append(header_text)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
else:
|
| 129 |
-
for cells in row_images:
|
| 130 |
-
# plt.imshow(cells)
|
| 131 |
-
# c2.pyplot()
|
| 132 |
-
# c2.write(pytess(cells))
|
| 133 |
-
##############################
|
| 134 |
-
SR_img = super_res(cells)
|
| 135 |
-
# # w, h = SR_img.size
|
| 136 |
-
# # SR_img = SR_img.crop((0 ,0 ,w, h-60))
|
| 137 |
-
# plt.imshow(SR_img)
|
| 138 |
-
# c3.pyplot()
|
| 139 |
-
# c3.write(pytess(SR_img))
|
| 140 |
-
cells_list.append(pytess(SR_img))
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
df = pd.DataFrame("", index=range(0, len(master_row)), columns=headers)
|
| 145 |
-
|
| 146 |
-
cell_idx = 0
|
| 147 |
-
|
| 148 |
-
for nrows in range(len(master_row)-1):
|
| 149 |
-
for ncols in range(len(cols)):
|
| 150 |
-
|
| 151 |
-
df.iat[nrows, ncols] = cells_list[cell_idx]
|
| 152 |
-
cell_idx += 1
|
| 153 |
-
|
| 154 |
-
c3.dataframe(df)
|
| 155 |
-
# break
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|