Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,38 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "tomg-group-umd/huginn-0125"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Function to generate text
|
11 |
+
def generate_response(prompt, num_steps):
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
output = model.generate(input_ids, num_steps=num_steps, max_length=256)
|
20 |
+
|
21 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
22 |
+
return response
|
23 |
+
|
24 |
+
# Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=generate_response,
|
27 |
+
inputs=[
|
28 |
+
gr.Textbox(lines=5, label="Input Prompt"),
|
29 |
+
gr.Slider(minimum=4, maximum=64, step=1, value=16, label="Computation Scale (num_steps)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
],
|
31 |
+
outputs="text",
|
32 |
+
title="Huginn-0125 Text Generation",
|
33 |
+
description="Generate text using the Huginn-0125 model with adjustable computation scale."
|
34 |
)
|
35 |
|
36 |
+
# Run app
|
37 |
if __name__ == "__main__":
|
38 |
+
iface.launch()
|