plano_lit / yolo_inference_util.py
SakshiRathi77's picture
Upload 33 files
12b0903 verified
raw
history blame
14 kB
import argparse
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadStreams
from utils.general import (
apply_classifier,
check_img_size,
check_imshow,
check_requirements,
check_suffix,
colorstr,
increment_path,
is_ascii,
non_max_suppression,
save_one_box,
scale_coords,
set_logging,
strip_optimizer,
xyxy2xywh,
)
from utils.plots import Annotator, colors
from utils.torch_utils import load_classifier, select_device, time_sync
# FILE = Path(__file__).resolve()
# ROOT = FILE.parents[0] # YOLOv5 root directory
# if str(ROOT) not in sys.path:
# sys.path.append(str(ROOT)) # add ROOT to PATH
@torch.no_grad()
def run_yolo_v5(
weights="yolov5s.pt", # model.pt path(s)
source="data/images", # file/dir/URL/glob, 0 for webcam
imgsz=640, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project="runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
):
save_img = not nosave and not source.endswith(
".txt"
) # save inference images
webcam = (
source.isnumeric()
or source.endswith(".txt")
or source.lower().startswith(
("rtsp://", "rtmp://", "http://", "https://")
)
)
# Directories
save_dir = increment_path(
Path(project) / name, exist_ok=exist_ok
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Initialize
set_logging()
device = select_device(device)
half &= device.type != "cpu" # half precision only supported on CUDA
# Load model
w = weights[0] if isinstance(weights, list) else weights
classify, suffix, suffixes = (
False,
Path(w).suffix.lower(),
[".pt", ".onnx", ".tflite", ".pb", ""],
)
check_suffix(w, suffixes) # check weights have acceptable suffix
pt, onnx, tflite, pb, saved_model = (
suffix == x for x in suffixes
) # backend booleans
stride, names = 64, [f"class{i}" for i in range(1000)] # assign defaults
if pt:
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
names = (
model.module.names if hasattr(model, "module") else model.names
) # get class names
if half:
model.half() # to FP16
if classify: # second-stage classifier
modelc = load_classifier(name="resnet50", n=2) # initialize
modelc.load_state_dict(
torch.load("resnet50.pt", map_location=device)["model"]
).to(device).eval()
elif onnx:
check_requirements(("onnx", "onnxruntime"))
import onnxruntime
session = onnxruntime.InferenceSession(w, None)
else: # TensorFlow models
check_requirements(("tensorflow>=2.4.1",))
import tensorflow as tf
if (
pb
): # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
def wrap_frozen_graph(gd, inputs, outputs):
x = tf.compat.v1.wrap_function(
lambda: tf.compat.v1.import_graph_def(gd, name=""), []
) # wrapped import
return x.prune(
tf.nest.map_structure(x.graph.as_graph_element, inputs),
tf.nest.map_structure(x.graph.as_graph_element, outputs),
)
graph_def = tf.Graph().as_graph_def()
graph_def.ParseFromString(open(w, "rb").read())
frozen_func = wrap_frozen_graph(
gd=graph_def, inputs="x:0", outputs="Identity:0"
)
elif saved_model:
model = tf.keras.models.load_model(w)
elif tflite:
interpreter = tf.lite.Interpreter(
model_path=w
) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
int8 = (
input_details[0]["dtype"] == np.uint8
) # is TFLite quantized uint8 model
imgsz = check_img_size(imgsz, s=stride) # check image size
ascii = is_ascii(names) # names are ascii (use PIL for UTF-8)
# Dataloader
print("Loading data from the source", source)
if webcam:
view_img = check_imshow()
cudnn.benchmark = (
True # set True to speed up constant image size inference
)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
if pt and device.type != "cpu":
model(
torch.zeros(1, 3, *imgsz)
.to(device)
.type_as(next(model.parameters()))
) # run once
dt, seen = [0.0, 0.0, 0.0], 0
results = []
for path, img, im0s, vid_cap in dataset:
t1 = time_sync()
if onnx:
img = img.astype("float32")
else:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
if pt:
visualize = (
increment_path(save_dir / Path(path).stem, mkdir=True)
if visualize
else False
)
pred = model(img, augment=augment, visualize=visualize)[0]
elif onnx:
pred = torch.tensor(
session.run(
[session.get_outputs()[0].name],
{session.get_inputs()[0].name: img},
)
)
else: # tensorflow model (tflite, pb, saved_model)
imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy
if pb:
pred = frozen_func(x=tf.constant(imn)).numpy()
elif saved_model:
pred = model(imn, training=False).numpy()
elif tflite:
if int8:
scale, zero_point = input_details[0]["quantization"]
imn = (imn / scale + zero_point).astype(
np.uint8
) # de-scale
interpreter.set_tensor(input_details[0]["index"], imn)
interpreter.invoke()
pred = interpreter.get_tensor(output_details[0]["index"])
if int8:
scale, zero_point = output_details[0]["quantization"]
pred = (
pred.astype(np.float32) - zero_point
) * scale # re-scale
pred[..., 0] *= imgsz[1] # x
pred[..., 1] *= imgsz[0] # y
pred[..., 2] *= imgsz[1] # w
pred[..., 3] *= imgsz[0] # h
pred = torch.tensor(pred)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(
pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, s, im0, frame = (
path[i],
f"{i}: ",
im0s[i].copy(),
dataset.count,
)
else:
p, s, im0, frame = (
path,
"",
im0s.copy(),
getattr(dataset, "frame", 0),
)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # img.txt
s += "%gx%g " % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[
[1, 0, 1, 0]
] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(
im0, line_width=line_thickness, pil=not ascii
)
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape
).round()
results.append((im0, det))
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
.view(-1)
.tolist()
) # normalized xywh
line = (
(cls, *xywh, conf) if save_conf else (cls, *xywh)
) # label format
with open(txt_path + ".txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = (
None
if hide_labels
else (
names[c]
if hide_conf
else f"{names[c]} {conf:.2f}"
)
)
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(
xyxy,
imc,
file=save_dir
/ "crops"
/ names[c]
/ f"{p.stem}.jpg",
BGR=True,
)
# Print time (inference-only)
print(f"{s}Done. ({t3 - t2:.3f}s)")
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[
i
].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += ".mp4"
vid_writer[i] = cv2.VideoWriter(
save_path,
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(w, h),
)
vid_writer[i].write(im0)
# Print results
t = tuple(x / seen * 1e3 for x in dt) # speeds per image
print(
f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
% t
)
return results
# if save_txt or save_img:
# s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
# print(f"Results saved to {colorstr('bold', save_dir)}{s}")
# if update:
# strip_optimizer(weights) # update model (to fix SourceChangeWarning)