File size: 14,008 Bytes
12b0903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import argparse
import sys
from pathlib import Path

import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn

from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadStreams
from utils.general import (
    apply_classifier,
    check_img_size,
    check_imshow,
    check_requirements,
    check_suffix,
    colorstr,
    increment_path,
    is_ascii,
    non_max_suppression,
    save_one_box,
    scale_coords,
    set_logging,
    strip_optimizer,
    xyxy2xywh,
)
from utils.plots import Annotator, colors
from utils.torch_utils import load_classifier, select_device, time_sync

# FILE = Path(__file__).resolve()
# ROOT = FILE.parents[0]  # YOLOv5 root directory
# if str(ROOT) not in sys.path:
#     sys.path.append(str(ROOT))  # add ROOT to PATH



@torch.no_grad()
def run_yolo_v5(
    weights="yolov5s.pt",  # model.pt path(s)
    source="data/images",  # file/dir/URL/glob, 0 for webcam
    imgsz=640,  # inference size (pixels)
    conf_thres=0.25,  # confidence threshold
    iou_thres=0.45,  # NMS IOU threshold
    max_det=1000,  # maximum detections per image
    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
    view_img=False,  # show results
    save_txt=False,  # save results to *.txt
    save_conf=False,  # save confidences in --save-txt labels
    save_crop=False,  # save cropped prediction boxes
    nosave=False,  # do not save images/videos
    classes=None,  # filter by class: --class 0, or --class 0 2 3
    agnostic_nms=False,  # class-agnostic NMS
    augment=False,  # augmented inference
    visualize=False,  # visualize features
    update=False,  # update all models
    project="runs/detect",  # save results to project/name
    name="exp",  # save results to project/name
    exist_ok=False,  # existing project/name ok, do not increment
    line_thickness=3,  # bounding box thickness (pixels)
    hide_labels=False,  # hide labels
    hide_conf=False,  # hide confidences
    half=False,  # use FP16 half-precision inference
):
    save_img = not nosave and not source.endswith(
        ".txt"
    )  # save inference images
    webcam = (
        source.isnumeric()
        or source.endswith(".txt")
        or source.lower().startswith(
            ("rtsp://", "rtmp://", "http://", "https://")
        )
    )

    # Directories
    save_dir = increment_path(
        Path(project) / name, exist_ok=exist_ok
    )  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True
    )  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != "cpu"  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, suffix, suffixes = (
        False,
        Path(w).suffix.lower(),
        [".pt", ".onnx", ".tflite", ".pb", ""],
    )
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (
        suffix == x for x in suffixes
    )  # backend booleans
    stride, names = 64, [f"class{i}" for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model stride
        names = (
            model.module.names if hasattr(model, "module") else model.names
        )  # get class names
        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name="resnet50", n=2)  # initialize
            modelc.load_state_dict(
                torch.load("resnet50.pt", map_location=device)["model"]
            ).to(device).eval()
    elif onnx:
        check_requirements(("onnx", "onnxruntime"))
        import onnxruntime

        session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(("tensorflow>=2.4.1",))
        import tensorflow as tf

        if (
            pb
        ):  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(
                    lambda: tf.compat.v1.import_graph_def(gd, name=""), []
                )  # wrapped import
                return x.prune(
                    tf.nest.map_structure(x.graph.as_graph_element, inputs),
                    tf.nest.map_structure(x.graph.as_graph_element, outputs),
                )

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, "rb").read())
            frozen_func = wrap_frozen_graph(
                gd=graph_def, inputs="x:0", outputs="Identity:0"
            )
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(
                model_path=w
            )  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = (
                input_details[0]["dtype"] == np.uint8
            )  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    ascii = is_ascii(names)  # names are ascii (use PIL for UTF-8)

    # Dataloader
    print("Loading data from the source", source)
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = (
            True  # set True to speed up constant image size inference
        )
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != "cpu":
        model(
            torch.zeros(1, 3, *imgsz)
            .to(device)
            .type_as(next(model.parameters()))
        )  # run once
    dt, seen = [0.0, 0.0, 0.0], 0
    results = []
    for path, img, im0s, vid_cap in dataset:
        t1 = time_sync()
        if onnx:
            img = img.astype("float32")
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        if pt:
            visualize = (
                increment_path(save_dir / Path(path).stem, mkdir=True)
                if visualize
                else False
            )
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            pred = torch.tensor(
                session.run(
                    [session.get_outputs()[0].name],
                    {session.get_inputs()[0].name: img},
                )
            )
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]["quantization"]
                    imn = (imn / scale + zero_point).astype(
                        np.uint8
                    )  # de-scale
                interpreter.set_tensor(input_details[0]["index"], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]["index"])
                if int8:
                    scale, zero_point = output_details[0]["quantization"]
                    pred = (
                        pred.astype(np.float32) - zero_point
                    ) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(
            pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
        )
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, s, im0, frame = (
                    path[i],
                    f"{i}: ",
                    im0s[i].copy(),
                    dataset.count,
                )
            else:
                p, s, im0, frame = (
                    path,
                    "",
                    im0s.copy(),
                    getattr(dataset, "frame", 0),
                )

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / "labels" / p.stem) + (
                "" if dataset.mode == "image" else f"_{frame}"
            )  # img.txt
            s += "%gx%g " % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[
                [1, 0, 1, 0]
            ]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(
                im0, line_width=line_thickness, pil=not ascii
            )
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape
                ).round()
                results.append((im0, det))
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (
                            (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
                            .view(-1)
                            .tolist()
                        )  # normalized xywh
                        line = (
                            (cls, *xywh, conf) if save_conf else (cls, *xywh)
                        )  # label format
                        with open(txt_path + ".txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = (
                            None
                            if hide_labels
                            else (
                                names[c]
                                if hide_conf
                                else f"{names[c]} {conf:.2f}"
                            )
                        )
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(
                                xyxy,
                                imc,
                                file=save_dir
                                / "crops"
                                / names[c]
                                / f"{p.stem}.jpg",
                                BGR=True,
                            )
            # Print time (inference-only)
            print(f"{s}Done. ({t3 - t2:.3f}s)")

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[
                                i
                            ].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += ".mp4"
                        vid_writer[i] = cv2.VideoWriter(
                            save_path,
                            cv2.VideoWriter_fourcc(*"mp4v"),
                            fps,
                            (w, h),
                        )
                    vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1e3 for x in dt)  # speeds per image
    print(
        f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
        % t
    )
    return results
    # if save_txt or save_img:
    #     s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
    #     print(f"Results saved to {colorstr('bold', save_dir)}{s}")
    # if update:
    #     strip_optimizer(weights)  # update model (to fix SourceChangeWarning)