Spaces:
Runtime error
Runtime error
File size: 14,008 Bytes
12b0903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import argparse
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadStreams
from utils.general import (
apply_classifier,
check_img_size,
check_imshow,
check_requirements,
check_suffix,
colorstr,
increment_path,
is_ascii,
non_max_suppression,
save_one_box,
scale_coords,
set_logging,
strip_optimizer,
xyxy2xywh,
)
from utils.plots import Annotator, colors
from utils.torch_utils import load_classifier, select_device, time_sync
# FILE = Path(__file__).resolve()
# ROOT = FILE.parents[0] # YOLOv5 root directory
# if str(ROOT) not in sys.path:
# sys.path.append(str(ROOT)) # add ROOT to PATH
@torch.no_grad()
def run_yolo_v5(
weights="yolov5s.pt", # model.pt path(s)
source="data/images", # file/dir/URL/glob, 0 for webcam
imgsz=640, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project="runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
):
save_img = not nosave and not source.endswith(
".txt"
) # save inference images
webcam = (
source.isnumeric()
or source.endswith(".txt")
or source.lower().startswith(
("rtsp://", "rtmp://", "http://", "https://")
)
)
# Directories
save_dir = increment_path(
Path(project) / name, exist_ok=exist_ok
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Initialize
set_logging()
device = select_device(device)
half &= device.type != "cpu" # half precision only supported on CUDA
# Load model
w = weights[0] if isinstance(weights, list) else weights
classify, suffix, suffixes = (
False,
Path(w).suffix.lower(),
[".pt", ".onnx", ".tflite", ".pb", ""],
)
check_suffix(w, suffixes) # check weights have acceptable suffix
pt, onnx, tflite, pb, saved_model = (
suffix == x for x in suffixes
) # backend booleans
stride, names = 64, [f"class{i}" for i in range(1000)] # assign defaults
if pt:
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
names = (
model.module.names if hasattr(model, "module") else model.names
) # get class names
if half:
model.half() # to FP16
if classify: # second-stage classifier
modelc = load_classifier(name="resnet50", n=2) # initialize
modelc.load_state_dict(
torch.load("resnet50.pt", map_location=device)["model"]
).to(device).eval()
elif onnx:
check_requirements(("onnx", "onnxruntime"))
import onnxruntime
session = onnxruntime.InferenceSession(w, None)
else: # TensorFlow models
check_requirements(("tensorflow>=2.4.1",))
import tensorflow as tf
if (
pb
): # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
def wrap_frozen_graph(gd, inputs, outputs):
x = tf.compat.v1.wrap_function(
lambda: tf.compat.v1.import_graph_def(gd, name=""), []
) # wrapped import
return x.prune(
tf.nest.map_structure(x.graph.as_graph_element, inputs),
tf.nest.map_structure(x.graph.as_graph_element, outputs),
)
graph_def = tf.Graph().as_graph_def()
graph_def.ParseFromString(open(w, "rb").read())
frozen_func = wrap_frozen_graph(
gd=graph_def, inputs="x:0", outputs="Identity:0"
)
elif saved_model:
model = tf.keras.models.load_model(w)
elif tflite:
interpreter = tf.lite.Interpreter(
model_path=w
) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
int8 = (
input_details[0]["dtype"] == np.uint8
) # is TFLite quantized uint8 model
imgsz = check_img_size(imgsz, s=stride) # check image size
ascii = is_ascii(names) # names are ascii (use PIL for UTF-8)
# Dataloader
print("Loading data from the source", source)
if webcam:
view_img = check_imshow()
cudnn.benchmark = (
True # set True to speed up constant image size inference
)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
if pt and device.type != "cpu":
model(
torch.zeros(1, 3, *imgsz)
.to(device)
.type_as(next(model.parameters()))
) # run once
dt, seen = [0.0, 0.0, 0.0], 0
results = []
for path, img, im0s, vid_cap in dataset:
t1 = time_sync()
if onnx:
img = img.astype("float32")
else:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
if pt:
visualize = (
increment_path(save_dir / Path(path).stem, mkdir=True)
if visualize
else False
)
pred = model(img, augment=augment, visualize=visualize)[0]
elif onnx:
pred = torch.tensor(
session.run(
[session.get_outputs()[0].name],
{session.get_inputs()[0].name: img},
)
)
else: # tensorflow model (tflite, pb, saved_model)
imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy
if pb:
pred = frozen_func(x=tf.constant(imn)).numpy()
elif saved_model:
pred = model(imn, training=False).numpy()
elif tflite:
if int8:
scale, zero_point = input_details[0]["quantization"]
imn = (imn / scale + zero_point).astype(
np.uint8
) # de-scale
interpreter.set_tensor(input_details[0]["index"], imn)
interpreter.invoke()
pred = interpreter.get_tensor(output_details[0]["index"])
if int8:
scale, zero_point = output_details[0]["quantization"]
pred = (
pred.astype(np.float32) - zero_point
) * scale # re-scale
pred[..., 0] *= imgsz[1] # x
pred[..., 1] *= imgsz[0] # y
pred[..., 2] *= imgsz[1] # w
pred[..., 3] *= imgsz[0] # h
pred = torch.tensor(pred)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(
pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, s, im0, frame = (
path[i],
f"{i}: ",
im0s[i].copy(),
dataset.count,
)
else:
p, s, im0, frame = (
path,
"",
im0s.copy(),
getattr(dataset, "frame", 0),
)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # img.txt
s += "%gx%g " % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[
[1, 0, 1, 0]
] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(
im0, line_width=line_thickness, pil=not ascii
)
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape
).round()
results.append((im0, det))
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
.view(-1)
.tolist()
) # normalized xywh
line = (
(cls, *xywh, conf) if save_conf else (cls, *xywh)
) # label format
with open(txt_path + ".txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = (
None
if hide_labels
else (
names[c]
if hide_conf
else f"{names[c]} {conf:.2f}"
)
)
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(
xyxy,
imc,
file=save_dir
/ "crops"
/ names[c]
/ f"{p.stem}.jpg",
BGR=True,
)
# Print time (inference-only)
print(f"{s}Done. ({t3 - t2:.3f}s)")
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[
i
].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += ".mp4"
vid_writer[i] = cv2.VideoWriter(
save_path,
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(w, h),
)
vid_writer[i].write(im0)
# Print results
t = tuple(x / seen * 1e3 for x in dt) # speeds per image
print(
f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
% t
)
return results
# if save_txt or save_img:
# s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
# print(f"Results saved to {colorstr('bold', save_dir)}{s}")
# if update:
# strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|