File size: 7,461 Bytes
88e409c
 
12b0903
88e409c
 
12b0903
88e409c
12b0903
 
88e409c
12b0903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
sdk: streamlit
sdk_version: 1.10.0 # The latest supported version
app_file: app.py
pinned: false
fullWidth: True
---
## <div align="center">Planogram Scoring</div>
<p>

</p>
- Train a Yolo Model on the available products in our data base to detect them on a shelf
- https://wandb.ai/abhilash001vj/YOLOv5/runs/1v6yh7nk?workspace=user-abhilash001vj
- Have the master planogram data captured as a matrix of products encoded as numbers (label encoding by looking the products names saved in a  list of all - the available product names )
- Detect the products on real images from stores.
- Arrange the detected products in the captured photograph to rows and columns 
- Compare the product arrangement of captured photograph to the existing master planogram and produce the compliance score for correctly placed products

</div>

## <div align="center">YOLOv5</div>
<p>
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
 open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>

</div>

## <div align="center">Documentation</div>

See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.

## <div align="center">Quick Start Examples</div>

<details open>
<summary>Install</summary>

[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->

```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```

</details>

<details open>
<summary>Inference</summary>

Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).

```python
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
```

</details>


## <div align="center">Why YOLOv5</div>

<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
<details>
  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>

<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
  <summary>Figure Notes (click to expand)</summary>

* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size
  32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by
  `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`

</details>

### Pretrained Checkpoints

[assets]: https://github.com/ultralytics/yolov5/releases

|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPs<br><sup>640 (B)
|---                    |---  |---      |---      |---      |---     |---|---   |---
|[YOLOv5s][assets]      |640  |36.7     |36.7     |55.4     |**2.0** |   |7.3   |17.0
|[YOLOv5m][assets]      |640  |44.5     |44.5     |63.1     |2.7     |   |21.4  |51.3
|[YOLOv5l][assets]      |640  |48.2     |48.2     |66.9     |3.8     |   |47.0  |115.4
|[YOLOv5x][assets]      |640  |**50.4** |**50.4** |**68.8** |6.1     |   |87.7  |218.8
|                       |     |         |         |         |        |   |      |
|[YOLOv5s6][assets]     |1280 |43.3     |43.3     |61.9     |**4.3** |   |12.7  |17.4
|[YOLOv5m6][assets]     |1280 |50.5     |50.5     |68.7     |8.4     |   |35.9  |52.4
|[YOLOv5l6][assets]     |1280 |53.4     |53.4     |71.1     |12.3    |   |77.2  |117.7
|[YOLOv5x6][assets]     |1280 |**54.4** |**54.4** |**72.0** |22.4    |   |141.8 |222.9
|                       |     |         |         |         |        |   |      |
|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8    |   |-     |-

<details>
  <summary>Table Notes (click to expand)</summary>

* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results
  denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP**
  by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a
  GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
  includes FP16 inference, postprocessing and NMS. **Reproduce speed**
  by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale
  augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

</details>

## <div align="center">Contribute</div>

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see
our [Contributing Guide](CONTRIBUTING.md) to get started.

## <div align="center">Contact</div>

For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).

<br>

<div align="center">
    <a href="https://github.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.linkedin.com/company/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://twitter.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://youtube.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.facebook.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.instagram.com/ultralytics/">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
    </a>
</div>