Sakibrumu commited on
Commit
dd2ba72
·
verified ·
1 Parent(s): aa4a9b6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import cv2
4
+ import pytesseract
5
+
6
+ # Load the trained YOLOv5 model (replace 'best.pt' with your actual model path)
7
+ model = torch.hub.load('ultralytics/yolov5:v6.0', 'custom', path='runs/train/exp/weights/yolov10n.pt')
8
+
9
+ def process_video(input_video):
10
+ # Read video frames
11
+ cap = cv2.VideoCapture(input_video.name)
12
+ output_video = "output.mp4"
13
+
14
+ # Get video details
15
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
16
+ fps = int(cap.get(cv2.CAP_PROP_FPS))
17
+ frame_width = int(cap.get(3))
18
+ frame_height = int(cap.get(4))
19
+
20
+ out = cv2.VideoWriter(output_video, fourcc, fps, (frame_width, frame_height))
21
+
22
+ while cap.isOpened():
23
+ ret, frame = cap.read()
24
+ if not ret:
25
+ break
26
+
27
+ # Use YOLO model to detect license plates
28
+ results = model(frame)
29
+ detected_boxes = results.xyxy[0] # Bounding boxes, confidence scores, and class IDs
30
+
31
+ # Loop through all the detected bounding boxes
32
+ for box in detected_boxes:
33
+ x1, y1, x2, y2, conf, cls = map(int, box[:6]) # Extract bounding box coordinates and confidence
34
+ if conf > 0.5: # You can adjust the confidence threshold as needed
35
+ # Draw the bounding box on the frame
36
+ cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
37
+
38
+ # Optionally, draw the confidence score and label (use class names for 3 classes)
39
+ if cls == 0:
40
+ label = "Analog License Plate"
41
+ elif cls == 1:
42
+ label = "Digital License Plate"
43
+ elif cls == 2:
44
+ label = "Non-License Plate"
45
+ else:
46
+ label = "Unknown"
47
+
48
+ # Draw label and confidence on frame
49
+ cv2.putText(frame, f"{label}: {conf:.2f}", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
50
+
51
+ # Optionally, collect the bounding box coordinates for further processing (e.g., OCR)
52
+ license_plate = frame[y1:y2, x1:x2]
53
+ # Convert to grayscale for better OCR results
54
+ gray_license_plate = cv2.cvtColor(license_plate, cv2.COLOR_BGR2GRAY)
55
+
56
+ # Use Tesseract OCR to extract text from Bangla license plates (adjust config as needed)
57
+ text = pytesseract.image_to_string(gray_license_plate, config="--psm 6 -l ben") # 'ben' is for Bangla
58
+ print(f"Detected License Plate Text: {text.strip()}")
59
+
60
+ # Write the annotated frame to output video
61
+ out.write(frame)
62
+
63
+ cap.release()
64
+ out.release()
65
+ return output_video
66
+
67
+ # Create Gradio Interface
68
+ interface = gr.Interface(fn=process_video, inputs=gr.inputs.Video(), outputs=gr.outputs.Video())
69
+ interface.launch()