Sakibrumu commited on
Commit
68ec513
·
verified ·
1 Parent(s): 30eb96a

Delete yolov5

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. yolov5/.dockerignore +0 -222
  2. yolov5/.gitattributes +0 -2
  3. yolov5/.github/ISSUE_TEMPLATE/bug-report.yml +0 -87
  4. yolov5/.github/ISSUE_TEMPLATE/config.yml +0 -13
  5. yolov5/.github/ISSUE_TEMPLATE/feature-request.yml +0 -52
  6. yolov5/.github/ISSUE_TEMPLATE/question.yml +0 -35
  7. yolov5/.github/dependabot.yml +0 -28
  8. yolov5/.github/workflows/ci-testing.yml +0 -151
  9. yolov5/.github/workflows/cla.yml +0 -45
  10. yolov5/.github/workflows/docker.yml +0 -61
  11. yolov5/.github/workflows/format.yml +0 -59
  12. yolov5/.github/workflows/links.yml +0 -72
  13. yolov5/.github/workflows/merge-main-into-prs.yml +0 -72
  14. yolov5/.github/workflows/stale.yml +0 -47
  15. yolov5/.gitignore +0 -258
  16. yolov5/CITATION.cff +0 -14
  17. yolov5/CONTRIBUTING.md +0 -76
  18. yolov5/LICENSE +0 -661
  19. yolov5/README.md +0 -513
  20. yolov5/README.zh-CN.md +0 -513
  21. yolov5/benchmarks.py +0 -294
  22. yolov5/classify/predict.py +0 -241
  23. yolov5/classify/train.py +0 -382
  24. yolov5/classify/tutorial.ipynb +0 -1488
  25. yolov5/classify/val.py +0 -178
  26. yolov5/data/Argoverse.yaml +0 -73
  27. yolov5/data/GlobalWheat2020.yaml +0 -53
  28. yolov5/data/ImageNet.yaml +0 -1021
  29. yolov5/data/ImageNet10.yaml +0 -31
  30. yolov5/data/ImageNet100.yaml +0 -120
  31. yolov5/data/ImageNet1000.yaml +0 -1021
  32. yolov5/data/Objects365.yaml +0 -437
  33. yolov5/data/SKU-110K.yaml +0 -52
  34. yolov5/data/VOC.yaml +0 -99
  35. yolov5/data/VisDrone.yaml +0 -69
  36. yolov5/data/coco.yaml +0 -115
  37. yolov5/data/coco128-seg.yaml +0 -100
  38. yolov5/data/coco128.yaml +0 -100
  39. yolov5/data/hyps/hyp.Objects365.yaml +0 -35
  40. yolov5/data/hyps/hyp.VOC.yaml +0 -41
  41. yolov5/data/hyps/hyp.no-augmentation.yaml +0 -36
  42. yolov5/data/hyps/hyp.scratch-high.yaml +0 -35
  43. yolov5/data/hyps/hyp.scratch-low.yaml +0 -35
  44. yolov5/data/hyps/hyp.scratch-med.yaml +0 -35
  45. yolov5/data/images/bus.jpg +0 -3
  46. yolov5/data/images/zidane.jpg +0 -3
  47. yolov5/data/scripts/download_weights.sh +0 -23
  48. yolov5/data/scripts/get_coco.sh +0 -57
  49. yolov5/data/scripts/get_coco128.sh +0 -18
  50. yolov5/data/scripts/get_imagenet.sh +0 -52
yolov5/.dockerignore DELETED
@@ -1,222 +0,0 @@
1
- # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2
- .git
3
- .cache
4
- .idea
5
- runs
6
- output
7
- coco
8
- storage.googleapis.com
9
-
10
- data/samples/*
11
- **/results*.csv
12
- *.jpg
13
-
14
- # Neural Network weights -----------------------------------------------------------------------------------------------
15
- **/*.pt
16
- **/*.pth
17
- **/*.onnx
18
- **/*.engine
19
- **/*.mlmodel
20
- **/*.torchscript
21
- **/*.torchscript.pt
22
- **/*.tflite
23
- **/*.h5
24
- **/*.pb
25
- *_saved_model/
26
- *_web_model/
27
- *_openvino_model/
28
-
29
- # Below Copied From .gitignore -----------------------------------------------------------------------------------------
30
- # Below Copied From .gitignore -----------------------------------------------------------------------------------------
31
-
32
-
33
- # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
34
- # Byte-compiled / optimized / DLL files
35
- __pycache__/
36
- *.py[cod]
37
- *$py.class
38
-
39
- # C extensions
40
- *.so
41
-
42
- # Distribution / packaging
43
- .Python
44
- env/
45
- build/
46
- develop-eggs/
47
- dist/
48
- downloads/
49
- eggs/
50
- .eggs/
51
- lib/
52
- lib64/
53
- parts/
54
- sdist/
55
- var/
56
- wheels/
57
- *.egg-info/
58
- wandb/
59
- .installed.cfg
60
- *.egg
61
-
62
- # PyInstaller
63
- # Usually these files are written by a python script from a template
64
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
65
- *.manifest
66
- *.spec
67
-
68
- # Installer logs
69
- pip-log.txt
70
- pip-delete-this-directory.txt
71
-
72
- # Unit test / coverage reports
73
- htmlcov/
74
- .tox/
75
- .coverage
76
- .coverage.*
77
- .cache
78
- nosetests.xml
79
- coverage.xml
80
- *.cover
81
- .hypothesis/
82
-
83
- # Translations
84
- *.mo
85
- *.pot
86
-
87
- # Django stuff:
88
- *.log
89
- local_settings.py
90
-
91
- # Flask stuff:
92
- instance/
93
- .webassets-cache
94
-
95
- # Scrapy stuff:
96
- .scrapy
97
-
98
- # Sphinx documentation
99
- docs/_build/
100
-
101
- # PyBuilder
102
- target/
103
-
104
- # Jupyter Notebook
105
- .ipynb_checkpoints
106
-
107
- # pyenv
108
- .python-version
109
-
110
- # celery beat schedule file
111
- celerybeat-schedule
112
-
113
- # SageMath parsed files
114
- *.sage.py
115
-
116
- # dotenv
117
- .env
118
-
119
- # virtualenv
120
- .venv*
121
- venv*/
122
- ENV*/
123
-
124
- # Spyder project settings
125
- .spyderproject
126
- .spyproject
127
-
128
- # Rope project settings
129
- .ropeproject
130
-
131
- # mkdocs documentation
132
- /site
133
-
134
- # mypy
135
- .mypy_cache/
136
-
137
-
138
- # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
139
-
140
- # General
141
- .DS_Store
142
- .AppleDouble
143
- .LSOverride
144
-
145
- # Icon must end with two \r
146
- Icon
147
- Icon?
148
-
149
- # Thumbnails
150
- ._*
151
-
152
- # Files that might appear in the root of a volume
153
- .DocumentRevisions-V100
154
- .fseventsd
155
- .Spotlight-V100
156
- .TemporaryItems
157
- .Trashes
158
- .VolumeIcon.icns
159
- .com.apple.timemachine.donotpresent
160
-
161
- # Directories potentially created on remote AFP share
162
- .AppleDB
163
- .AppleDesktop
164
- Network Trash Folder
165
- Temporary Items
166
- .apdisk
167
-
168
-
169
- # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
170
- # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
171
- # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
172
-
173
- # User-specific stuff:
174
- .idea/*
175
- .idea/**/workspace.xml
176
- .idea/**/tasks.xml
177
- .idea/dictionaries
178
- .html # Bokeh Plots
179
- .pg # TensorFlow Frozen Graphs
180
- .avi # videos
181
-
182
- # Sensitive or high-churn files:
183
- .idea/**/dataSources/
184
- .idea/**/dataSources.ids
185
- .idea/**/dataSources.local.xml
186
- .idea/**/sqlDataSources.xml
187
- .idea/**/dynamic.xml
188
- .idea/**/uiDesigner.xml
189
-
190
- # Gradle:
191
- .idea/**/gradle.xml
192
- .idea/**/libraries
193
-
194
- # CMake
195
- cmake-build-debug/
196
- cmake-build-release/
197
-
198
- # Mongo Explorer plugin:
199
- .idea/**/mongoSettings.xml
200
-
201
- ## File-based project format:
202
- *.iws
203
-
204
- ## Plugin-specific files:
205
-
206
- # IntelliJ
207
- out/
208
-
209
- # mpeltonen/sbt-idea plugin
210
- .idea_modules/
211
-
212
- # JIRA plugin
213
- atlassian-ide-plugin.xml
214
-
215
- # Cursive Clojure plugin
216
- .idea/replstate.xml
217
-
218
- # Crashlytics plugin (for Android Studio and IntelliJ)
219
- com_crashlytics_export_strings.xml
220
- crashlytics.properties
221
- crashlytics-build.properties
222
- fabric.properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.gitattributes DELETED
@@ -1,2 +0,0 @@
1
- # this drop notebooks from GitHub language stats
2
- *.ipynb linguist-vendored
 
 
 
yolov5/.github/ISSUE_TEMPLATE/bug-report.yml DELETED
@@ -1,87 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- name: 🐛 Bug Report
4
- # title: " "
5
- description: Problems with YOLOv5
6
- labels: [bug, triage]
7
- body:
8
- - type: markdown
9
- attributes:
10
- value: |
11
- Thank you for submitting a YOLOv5 🐛 Bug Report!
12
-
13
- - type: checkboxes
14
- attributes:
15
- label: Search before asking
16
- description: >
17
- Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
18
- options:
19
- - label: >
20
- I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
21
- required: true
22
-
23
- - type: dropdown
24
- attributes:
25
- label: YOLOv5 Component
26
- description: |
27
- Please select the part of YOLOv5 where you found the bug.
28
- multiple: true
29
- options:
30
- - "Training"
31
- - "Validation"
32
- - "Detection"
33
- - "Export"
34
- - "PyTorch Hub"
35
- - "Multi-GPU"
36
- - "Evolution"
37
- - "Integrations"
38
- - "Other"
39
- validations:
40
- required: false
41
-
42
- - type: textarea
43
- attributes:
44
- label: Bug
45
- description: Provide console output with error messages and/or screenshots of the bug.
46
- placeholder: |
47
- 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
48
- validations:
49
- required: true
50
-
51
- - type: textarea
52
- attributes:
53
- label: Environment
54
- description: Please specify the software and hardware you used to produce the bug.
55
- placeholder: |
56
- - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
57
- - OS: Ubuntu 20.04
58
- - Python: 3.9.0
59
- validations:
60
- required: false
61
-
62
- - type: textarea
63
- attributes:
64
- label: Minimal Reproducible Example
65
- description: >
66
- When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
67
- This is referred to by community members as creating a [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/).
68
- placeholder: |
69
- ```
70
- # Code to reproduce your issue here
71
- ```
72
- validations:
73
- required: false
74
-
75
- - type: textarea
76
- attributes:
77
- label: Additional
78
- description: Anything else you would like to share?
79
-
80
- - type: checkboxes
81
- attributes:
82
- label: Are you willing to submit a PR?
83
- description: >
84
- (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
85
- See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
86
- options:
87
- - label: Yes I'd like to help by submitting a PR!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/ISSUE_TEMPLATE/config.yml DELETED
@@ -1,13 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- blank_issues_enabled: true
4
- contact_links:
5
- - name: 📄 Docs
6
- url: https://docs.ultralytics.com/yolov5
7
- about: View Ultralytics YOLOv5 Docs
8
- - name: 💬 Forum
9
- url: https://community.ultralytics.com/
10
- about: Ask on Ultralytics Community Forum
11
- - name: 🎧 Discord
12
- url: https://ultralytics.com/discord
13
- about: Ask on Ultralytics Discord
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/ISSUE_TEMPLATE/feature-request.yml DELETED
@@ -1,52 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- name: 🚀 Feature Request
4
- description: Suggest a YOLOv5 idea
5
- # title: " "
6
- labels: [enhancement]
7
- body:
8
- - type: markdown
9
- attributes:
10
- value: |
11
- Thank you for submitting a YOLOv5 🚀 Feature Request!
12
-
13
- - type: checkboxes
14
- attributes:
15
- label: Search before asking
16
- description: >
17
- Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
18
- options:
19
- - label: >
20
- I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
21
- required: true
22
-
23
- - type: textarea
24
- attributes:
25
- label: Description
26
- description: A short description of your feature.
27
- placeholder: |
28
- What new feature would you like to see in YOLOv5?
29
- validations:
30
- required: true
31
-
32
- - type: textarea
33
- attributes:
34
- label: Use case
35
- description: |
36
- Describe the use case of your feature request. It will help us understand and prioritize the feature request.
37
- placeholder: |
38
- How would this feature be used, and who would use it?
39
-
40
- - type: textarea
41
- attributes:
42
- label: Additional
43
- description: Anything else you would like to share?
44
-
45
- - type: checkboxes
46
- attributes:
47
- label: Are you willing to submit a PR?
48
- description: >
49
- (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
50
- See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
51
- options:
52
- - label: Yes I'd like to help by submitting a PR!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/ISSUE_TEMPLATE/question.yml DELETED
@@ -1,35 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- name: ❓ Question
4
- description: Ask a YOLOv5 question
5
- # title: " "
6
- labels: [question]
7
- body:
8
- - type: markdown
9
- attributes:
10
- value: |
11
- Thank you for asking a YOLOv5 ❓ Question!
12
-
13
- - type: checkboxes
14
- attributes:
15
- label: Search before asking
16
- description: >
17
- Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
18
- options:
19
- - label: >
20
- I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
21
- required: true
22
-
23
- - type: textarea
24
- attributes:
25
- label: Question
26
- description: What is your question?
27
- placeholder: |
28
- 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
29
- validations:
30
- required: true
31
-
32
- - type: textarea
33
- attributes:
34
- label: Additional
35
- description: Anything else you would like to share?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/dependabot.yml DELETED
@@ -1,28 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Dependabot for package version updates
4
- # https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
5
-
6
- version: 2
7
- updates:
8
- - package-ecosystem: pip
9
- directory: "/"
10
- schedule:
11
- interval: weekly
12
- time: "04:00"
13
- open-pull-requests-limit: 10
14
- reviewers:
15
- - glenn-jocher
16
- labels:
17
- - dependencies
18
-
19
- - package-ecosystem: github-actions
20
- directory: "/.github/workflows"
21
- schedule:
22
- interval: weekly
23
- time: "04:00"
24
- open-pull-requests-limit: 5
25
- reviewers:
26
- - glenn-jocher
27
- labels:
28
- - dependencies
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/ci-testing.yml DELETED
@@ -1,151 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # YOLOv5 Continuous Integration (CI) GitHub Actions tests
4
-
5
- name: YOLOv5 CI
6
-
7
- on:
8
- push:
9
- branches: [master]
10
- pull_request:
11
- branches: [master]
12
- schedule:
13
- - cron: "0 0 * * *" # runs at 00:00 UTC every day
14
- workflow_dispatch:
15
-
16
- jobs:
17
- Benchmarks:
18
- runs-on: ${{ matrix.os }}
19
- strategy:
20
- fail-fast: false
21
- matrix:
22
- os: [ubuntu-latest]
23
- python-version: ["3.11"] # requires python<=3.11
24
- model: [yolov5n]
25
- steps:
26
- - uses: actions/checkout@v4
27
- - uses: actions/setup-python@v5
28
- with:
29
- python-version: ${{ matrix.python-version }}
30
- cache: "pip" # cache pip dependencies
31
- - name: Install requirements
32
- run: |
33
- python -m pip install --upgrade pip wheel
34
- pip install -r requirements.txt coremltools openvino-dev "tensorflow-cpu<2.15.1" --extra-index-url https://download.pytorch.org/whl/cpu
35
- yolo checks
36
- pip list
37
- - name: Benchmark DetectionModel
38
- run: |
39
- python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
40
- - name: Benchmark SegmentationModel
41
- run: |
42
- python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
43
- - name: Test predictions
44
- run: |
45
- python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
46
- python detect.py --weights ${{ matrix.model }}.onnx --img 320
47
- python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
48
- python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
49
-
50
- Tests:
51
- timeout-minutes: 60
52
- runs-on: ${{ matrix.os }}
53
- strategy:
54
- fail-fast: false
55
- matrix:
56
- os: [ubuntu-latest, windows-latest, macos-14] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
57
- python-version: ["3.11"]
58
- model: [yolov5n]
59
- include:
60
- - os: ubuntu-latest
61
- python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
62
- model: yolov5n
63
- torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
64
- steps:
65
- - uses: actions/checkout@v4
66
- - uses: actions/setup-python@v5
67
- with:
68
- python-version: ${{ matrix.python-version }}
69
- cache: "pip" # caching pip dependencies
70
- - name: Install requirements
71
- run: |
72
- python -m pip install --upgrade pip wheel
73
- torch=""
74
- if [ "${{ matrix.torch }}" == "1.8.0" ]; then
75
- torch="torch==1.8.0 torchvision==0.9.0"
76
- fi
77
- pip install -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu
78
- shell: bash # for Windows compatibility
79
- - name: Check environment
80
- run: |
81
- yolo checks
82
- pip list
83
- - name: Test detection
84
- shell: bash # for Windows compatibility
85
- run: |
86
- # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
87
- m=${{ matrix.model }} # official weights
88
- b=runs/train/exp/weights/best # best.pt checkpoint
89
- python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
90
- for d in cpu; do # devices
91
- for w in $m $b; do # weights
92
- python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
93
- python detect.py --imgsz 64 --weights $w.pt --device $d # detect
94
- done
95
- done
96
- python hubconf.py --model $m # hub
97
- # python models/tf.py --weights $m.pt # build TF model
98
- python models/yolo.py --cfg $m.yaml # build PyTorch model
99
- python export.py --weights $m.pt --img 64 --include torchscript # export
100
- python - <<EOF
101
- import torch
102
- im = torch.zeros([1, 3, 64, 64])
103
- for path in '$m', '$b':
104
- model = torch.hub.load('.', 'custom', path=path, source='local')
105
- print(model('data/images/bus.jpg'))
106
- model(im) # warmup, build grids for trace
107
- torch.jit.trace(model, [im])
108
- EOF
109
- - name: Test segmentation
110
- shell: bash # for Windows compatibility
111
- run: |
112
- m=${{ matrix.model }}-seg # official weights
113
- b=runs/train-seg/exp/weights/best # best.pt checkpoint
114
- python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
115
- python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
116
- for d in cpu; do # devices
117
- for w in $m $b; do # weights
118
- python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
119
- python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
120
- python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
121
- done
122
- done
123
- - name: Test classification
124
- shell: bash # for Windows compatibility
125
- run: |
126
- m=${{ matrix.model }}-cls.pt # official weights
127
- b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
128
- python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
129
- python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
130
- python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
131
- python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
132
- python export.py --weights $b --img 64 --include torchscript # export
133
- python - <<EOF
134
- import torch
135
- for path in '$m', '$b':
136
- model = torch.hub.load('.', 'custom', path=path, source='local')
137
- EOF
138
-
139
- Summary:
140
- runs-on: ubuntu-latest
141
- needs: [Benchmarks, Tests]
142
- if: always()
143
- steps:
144
- - name: Check for failure and notify
145
- if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push') && github.run_attempt == '1'
146
- uses: slackapi/[email protected]
147
- with:
148
- webhook-type: incoming-webhook
149
- webhook: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
150
- payload: |
151
- text: "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/cla.yml DELETED
@@ -1,45 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA
4
- # This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged
5
-
6
- name: CLA Assistant
7
- on:
8
- issue_comment:
9
- types:
10
- - created
11
- pull_request_target:
12
- types:
13
- - reopened
14
- - opened
15
- - synchronize
16
-
17
- permissions:
18
- actions: write
19
- contents: write
20
- pull-requests: write
21
- statuses: write
22
-
23
- jobs:
24
- CLA:
25
- if: github.repository == 'ultralytics/yolov5'
26
- runs-on: ubuntu-latest
27
- steps:
28
- - name: CLA Assistant
29
- if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
30
- uses: contributor-assistant/[email protected]
31
- env:
32
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
33
- # Must be repository secret PAT
34
- PERSONAL_ACCESS_TOKEN: ${{ secrets._GITHUB_TOKEN }}
35
- with:
36
- path-to-signatures: "signatures/version1/cla.json"
37
- path-to-document: "https://docs.ultralytics.com/help/CLA" # CLA document
38
- # Branch must not be protected
39
- branch: "cla-signatures"
40
- allowlist: dependabot[bot],github-actions,[pre-commit*,pre-commit*,bot*
41
-
42
- remote-organization-name: ultralytics
43
- remote-repository-name: cla
44
- custom-pr-sign-comment: "I have read the CLA Document and I sign the CLA"
45
- custom-allsigned-prcomment: All Contributors have signed the CLA. ✅
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/docker.yml DELETED
@@ -1,61 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
4
-
5
- name: Publish Docker Images
6
-
7
- on:
8
- push:
9
- branches: [master]
10
- workflow_dispatch:
11
-
12
- jobs:
13
- docker:
14
- if: github.repository == 'ultralytics/yolov5'
15
- name: Push Docker image to Docker Hub
16
- runs-on: ubuntu-latest
17
- steps:
18
- - name: Checkout repo
19
- uses: actions/checkout@v4
20
- with:
21
- fetch-depth: 0 # copy full .git directory to access full git history in Docker images
22
-
23
- - name: Set up QEMU
24
- uses: docker/setup-qemu-action@v3
25
-
26
- - name: Set up Docker Buildx
27
- uses: docker/setup-buildx-action@v3
28
-
29
- - name: Login to Docker Hub
30
- uses: docker/login-action@v3
31
- with:
32
- username: ${{ secrets.DOCKERHUB_USERNAME }}
33
- password: ${{ secrets.DOCKERHUB_TOKEN }}
34
-
35
- - name: Build and push arm64 image
36
- uses: docker/build-push-action@v6
37
- continue-on-error: true
38
- with:
39
- context: .
40
- platforms: linux/arm64
41
- file: utils/docker/Dockerfile-arm64
42
- push: true
43
- tags: ultralytics/yolov5:latest-arm64
44
-
45
- - name: Build and push CPU image
46
- uses: docker/build-push-action@v6
47
- continue-on-error: true
48
- with:
49
- context: .
50
- file: utils/docker/Dockerfile-cpu
51
- push: true
52
- tags: ultralytics/yolov5:latest-cpu
53
-
54
- - name: Build and push GPU image
55
- uses: docker/build-push-action@v6
56
- continue-on-error: true
57
- with:
58
- context: .
59
- file: utils/docker/Dockerfile
60
- push: true
61
- tags: ultralytics/yolov5:latest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/format.yml DELETED
@@ -1,59 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Ultralytics Actions https://github.com/ultralytics/actions
4
- # This workflow automatically formats code and documentation in PRs to official Ultralytics standards
5
-
6
- name: Ultralytics Actions
7
-
8
- on:
9
- issues:
10
- types: [opened]
11
- pull_request:
12
- branches: [main, master]
13
- types: [opened, closed, synchronize, review_requested]
14
-
15
- jobs:
16
- format:
17
- runs-on: ubuntu-latest
18
- steps:
19
- - name: Run Ultralytics Formatting
20
- uses: ultralytics/actions@main
21
- with:
22
- token: ${{ secrets._GITHUB_TOKEN || secrets.GITHUB_TOKEN }}
23
- labels: true # autolabel issues and PRs
24
- python: true # format Python code and docstrings
25
- prettier: true # format YAML, JSON, Markdown and CSS
26
- spelling: true # check spelling
27
- links: false # check broken links
28
- summary: true # print PR summary with GPT4o (requires 'openai_api_key')
29
- openai_api_key: ${{ secrets.OPENAI_API_KEY }}
30
- first_issue_response: |
31
- 👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://docs.ultralytics.com/yolov5/) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) all the way to advanced concepts like [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/).
32
-
33
- If this is a 🐛 Bug Report, please provide a **minimum reproducible example** to help us debug it.
34
-
35
- If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/).
36
-
37
- ## Requirements
38
-
39
- [**Python>=3.8.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). To get started:
40
- ```bash
41
- git clone https://github.com/ultralytics/yolov5 # clone
42
- cd yolov5
43
- pip install -r requirements.txt # install
44
- ```
45
-
46
- ## Environments
47
-
48
- YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
49
-
50
- - **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
51
- - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
52
- - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
53
- - **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
54
-
55
- ## Status
56
-
57
- <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
58
-
59
- If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/links.yml DELETED
@@ -1,72 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
4
- # Ignores the following status codes to reduce false positives:
5
- # - 403(OpenVINO, 'forbidden')
6
- # - 429(Instagram, 'too many requests')
7
- # - 500(Zenodo, 'cached')
8
- # - 502(Zenodo, 'bad gateway')
9
- # - 999(LinkedIn, 'unknown status code')
10
-
11
- name: Check Broken links
12
-
13
- on:
14
- workflow_dispatch:
15
- schedule:
16
- - cron: "0 0 * * *" # runs at 00:00 UTC every day
17
-
18
- jobs:
19
- Links:
20
- runs-on: ubuntu-latest
21
- steps:
22
- - uses: actions/checkout@v4
23
-
24
- - name: Download and install lychee
25
- run: |
26
- LYCHEE_URL=$(curl -s https://api.github.com/repos/lycheeverse/lychee/releases/latest | grep "browser_download_url" | grep "x86_64-unknown-linux-gnu.tar.gz" | cut -d '"' -f 4)
27
- curl -L $LYCHEE_URL | tar xz -C /usr/local/bin
28
-
29
- - name: Test Markdown and HTML links with retry
30
- uses: ultralytics/actions/retry@main
31
- with:
32
- timeout_minutes: 5
33
- retry_delay_seconds: 60
34
- retries: 2
35
- run: |
36
- lychee \
37
- --scheme 'https' \
38
- --timeout 60 \
39
- --insecure \
40
- --accept 403,429,500,502,999 \
41
- --exclude-all-private \
42
- --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
43
- --exclude-path '**/ci.yaml' \
44
- --github-token ${{ secrets.GITHUB_TOKEN }} \
45
- --header "User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
46
- './**/*.md' \
47
- './**/*.html' | tee -a $GITHUB_STEP_SUMMARY
48
-
49
- - name: Test Markdown, HTML, YAML, Python and Notebook links with retry
50
- if: github.event_name == 'workflow_dispatch'
51
- uses: ultralytics/actions/retry@main
52
- with:
53
- timeout_minutes: 5
54
- retry_delay_seconds: 60
55
- retries: 2
56
- run: |
57
- lychee \
58
- --scheme 'https' \
59
- --timeout 60 \
60
- --insecure \
61
- --accept 429,999 \
62
- --exclude-all-private \
63
- --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
64
- --exclude-path '**/ci.yaml' \
65
- --github-token ${{ secrets.GITHUB_TOKEN }} \
66
- --header "User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
67
- './**/*.md' \
68
- './**/*.html' \
69
- './**/*.yml' \
70
- './**/*.yaml' \
71
- './**/*.py' \
72
- './**/*.ipynb' | tee -a $GITHUB_STEP_SUMMARY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/merge-main-into-prs.yml DELETED
@@ -1,72 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Automatically merges repository 'main' branch into all open PRs to keep them up-to-date
4
- # Action runs on updates to main branch so when one PR merges to main all others update
5
-
6
- name: Merge main into PRs
7
-
8
- on:
9
- workflow_dispatch:
10
- # push:
11
- # branches:
12
- # - ${{ github.event.repository.default_branch }}
13
-
14
- jobs:
15
- Merge:
16
- if: github.repository == 'ultralytics/yolov5'
17
- runs-on: ubuntu-latest
18
- steps:
19
- - name: Checkout repository
20
- uses: actions/checkout@v4
21
- with:
22
- fetch-depth: 0
23
- - uses: actions/setup-python@v5
24
- with:
25
- python-version: "3.x"
26
- cache: "pip"
27
- - name: Install requirements
28
- run: |
29
- pip install pygithub
30
- - name: Merge default branch into PRs
31
- shell: python
32
- run: |
33
- from github import Github
34
- import os
35
-
36
- g = Github(os.getenv('GITHUB_TOKEN'))
37
- repo = g.get_repo(os.getenv('GITHUB_REPOSITORY'))
38
-
39
- # Fetch the default branch name
40
- default_branch_name = repo.default_branch
41
- default_branch = repo.get_branch(default_branch_name)
42
-
43
- for pr in repo.get_pulls(state='open', sort='created'):
44
- try:
45
- # Get full names for repositories and branches
46
- base_repo_name = repo.full_name
47
- head_repo_name = pr.head.repo.full_name
48
- base_branch_name = pr.base.ref
49
- head_branch_name = pr.head.ref
50
-
51
- # Check if PR is behind the default branch
52
- comparison = repo.compare(default_branch.commit.sha, pr.head.sha)
53
-
54
- if comparison.behind_by > 0:
55
- print(f"⚠️ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is behind {default_branch_name} by {comparison.behind_by} commit(s).")
56
-
57
- # Attempt to update the branch
58
- try:
59
- success = pr.update_branch()
60
- assert success, "Branch update failed"
61
- print(f"✅ Successfully merged '{default_branch_name}' into PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}).")
62
- except Exception as update_error:
63
- print(f"❌ Could not update PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}): {update_error}")
64
- print(" This might be due to branch protection rules or insufficient permissions.")
65
- else:
66
- print(f"✅ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is up to date with {default_branch_name}.")
67
- except Exception as e:
68
- print(f"❌ Could not process PR #{pr.number}: {e}")
69
-
70
- env:
71
- GITHUB_TOKEN: ${{ secrets._GITHUB_TOKEN }}
72
- GITHUB_REPOSITORY: ${{ github.repository }}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.github/workflows/stale.yml DELETED
@@ -1,47 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- name: Close stale issues
4
- on:
5
- schedule:
6
- - cron: "0 0 * * *" # Runs at 00:00 UTC every day
7
-
8
- jobs:
9
- stale:
10
- runs-on: ubuntu-latest
11
- steps:
12
- - uses: actions/stale@v9
13
- with:
14
- repo-token: ${{ secrets.GITHUB_TOKEN }}
15
-
16
- stale-issue-message: |
17
- 👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
18
-
19
- For additional resources and information, please see the links below:
20
-
21
- - **Docs**: https://docs.ultralytics.com
22
- - **HUB**: https://hub.ultralytics.com
23
- - **Community**: https://community.ultralytics.com
24
-
25
- Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
26
-
27
- Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
28
-
29
- stale-pr-message: |
30
- 👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
31
-
32
- We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
33
-
34
- For additional resources and information, please see the links below:
35
-
36
- - **Docs**: https://docs.ultralytics.com
37
- - **HUB**: https://hub.ultralytics.com
38
- - **Community**: https://community.ultralytics.com
39
-
40
- Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
41
-
42
- days-before-issue-stale: 30
43
- days-before-issue-close: 10
44
- days-before-pr-stale: 90
45
- days-before-pr-close: 30
46
- exempt-issue-labels: "documentation,tutorial,TODO"
47
- operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/.gitignore DELETED
@@ -1,258 +0,0 @@
1
- # Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
2
- *.jpg
3
- *.jpeg
4
- *.png
5
- *.bmp
6
- *.tif
7
- *.tiff
8
- *.heic
9
- *.JPG
10
- *.JPEG
11
- *.PNG
12
- *.BMP
13
- *.TIF
14
- *.TIFF
15
- *.HEIC
16
- *.mp4
17
- *.mov
18
- *.MOV
19
- *.avi
20
- *.data
21
- *.json
22
- *.cfg
23
- !setup.cfg
24
- !cfg/yolov3*.cfg
25
-
26
- storage.googleapis.com
27
- runs/*
28
- data/*
29
- data/images/*
30
- !data/*.yaml
31
- !data/hyps
32
- !data/scripts
33
- !data/images
34
- !data/images/zidane.jpg
35
- !data/images/bus.jpg
36
- !data/*.sh
37
-
38
- results*.csv
39
-
40
- # Datasets -------------------------------------------------------------------------------------------------------------
41
- coco/
42
- coco128/
43
- VOC/
44
-
45
- # MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
46
- *.m~
47
- *.mat
48
- !targets*.mat
49
-
50
- # Neural Network weights -----------------------------------------------------------------------------------------------
51
- *.weights
52
- *.pt
53
- *.pb
54
- *.onnx
55
- *.engine
56
- *.mlmodel
57
- *.mlpackage
58
- *.torchscript
59
- *.tflite
60
- *.h5
61
- *_saved_model/
62
- *_web_model/
63
- *_openvino_model/
64
- *_paddle_model/
65
- darknet53.conv.74
66
- yolov3-tiny.conv.15
67
-
68
- # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
69
- # Byte-compiled / optimized / DLL files
70
- __pycache__/
71
- *.py[cod]
72
- *$py.class
73
-
74
- # C extensions
75
- *.so
76
-
77
- # Distribution / packaging
78
- .Python
79
- env/
80
- build/
81
- develop-eggs/
82
- dist/
83
- downloads/
84
- eggs/
85
- .eggs/
86
- lib/
87
- lib64/
88
- parts/
89
- sdist/
90
- var/
91
- wheels/
92
- *.egg-info/
93
- /wandb/
94
- .installed.cfg
95
- *.egg
96
-
97
-
98
- # PyInstaller
99
- # Usually these files are written by a python script from a template
100
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
101
- *.manifest
102
- *.spec
103
-
104
- # Installer logs
105
- pip-log.txt
106
- pip-delete-this-directory.txt
107
-
108
- # Unit test / coverage reports
109
- htmlcov/
110
- .tox/
111
- .coverage
112
- .coverage.*
113
- .cache
114
- nosetests.xml
115
- coverage.xml
116
- *.cover
117
- .hypothesis/
118
-
119
- # Translations
120
- *.mo
121
- *.pot
122
-
123
- # Django stuff:
124
- *.log
125
- local_settings.py
126
-
127
- # Flask stuff:
128
- instance/
129
- .webassets-cache
130
-
131
- # Scrapy stuff:
132
- .scrapy
133
-
134
- # Sphinx documentation
135
- docs/_build/
136
-
137
- # PyBuilder
138
- target/
139
-
140
- # Jupyter Notebook
141
- .ipynb_checkpoints
142
-
143
- # pyenv
144
- .python-version
145
-
146
- # celery beat schedule file
147
- celerybeat-schedule
148
-
149
- # SageMath parsed files
150
- *.sage.py
151
-
152
- # dotenv
153
- .env
154
-
155
- # virtualenv
156
- .venv*
157
- venv*/
158
- ENV*/
159
-
160
- # Spyder project settings
161
- .spyderproject
162
- .spyproject
163
-
164
- # Rope project settings
165
- .ropeproject
166
-
167
- # mkdocs documentation
168
- /site
169
-
170
- # mypy
171
- .mypy_cache/
172
-
173
-
174
- # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
175
-
176
- # General
177
- .DS_Store
178
- .AppleDouble
179
- .LSOverride
180
-
181
- # Icon must end with two \r
182
- Icon
183
- Icon?
184
-
185
- # Thumbnails
186
- ._*
187
-
188
- # Files that might appear in the root of a volume
189
- .DocumentRevisions-V100
190
- .fseventsd
191
- .Spotlight-V100
192
- .TemporaryItems
193
- .Trashes
194
- .VolumeIcon.icns
195
- .com.apple.timemachine.donotpresent
196
-
197
- # Directories potentially created on remote AFP share
198
- .AppleDB
199
- .AppleDesktop
200
- Network Trash Folder
201
- Temporary Items
202
- .apdisk
203
-
204
-
205
- # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
206
- # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
207
- # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
208
-
209
- # User-specific stuff:
210
- .idea/*
211
- .idea/**/workspace.xml
212
- .idea/**/tasks.xml
213
- .idea/dictionaries
214
- .html # Bokeh Plots
215
- .pg # TensorFlow Frozen Graphs
216
- .avi # videos
217
-
218
- # Sensitive or high-churn files:
219
- .idea/**/dataSources/
220
- .idea/**/dataSources.ids
221
- .idea/**/dataSources.local.xml
222
- .idea/**/sqlDataSources.xml
223
- .idea/**/dynamic.xml
224
- .idea/**/uiDesigner.xml
225
-
226
- # Gradle:
227
- .idea/**/gradle.xml
228
- .idea/**/libraries
229
-
230
- # CMake
231
- cmake-build-debug/
232
- cmake-build-release/
233
-
234
- # Mongo Explorer plugin:
235
- .idea/**/mongoSettings.xml
236
-
237
- ## File-based project format:
238
- *.iws
239
-
240
- ## Plugin-specific files:
241
-
242
- # IntelliJ
243
- out/
244
-
245
- # mpeltonen/sbt-idea plugin
246
- .idea_modules/
247
-
248
- # JIRA plugin
249
- atlassian-ide-plugin.xml
250
-
251
- # Cursive Clojure plugin
252
- .idea/replstate.xml
253
-
254
- # Crashlytics plugin (for Android Studio and IntelliJ)
255
- com_crashlytics_export_strings.xml
256
- crashlytics.properties
257
- crashlytics-build.properties
258
- fabric.properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/CITATION.cff DELETED
@@ -1,14 +0,0 @@
1
- cff-version: 1.2.0
2
- preferred-citation:
3
- type: software
4
- message: If you use YOLOv5, please cite it as below.
5
- authors:
6
- - family-names: Jocher
7
- given-names: Glenn
8
- orcid: "https://orcid.org/0000-0001-5950-6979"
9
- title: "YOLOv5 by Ultralytics"
10
- version: 7.0
11
- doi: 10.5281/zenodo.3908559
12
- date-released: 2020-5-29
13
- license: AGPL-3.0
14
- url: "https://github.com/ultralytics/yolov5"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/CONTRIBUTING.md DELETED
@@ -1,76 +0,0 @@
1
- ## Contributing to YOLOv5 🚀
2
-
3
- We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4
-
5
- - Reporting a bug
6
- - Discussing the current state of the code
7
- - Submitting a fix
8
- - Proposing a new feature
9
- - Becoming a maintainer
10
-
11
- YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI 😃!
12
-
13
- ## Submitting a Pull Request (PR) 🛠️
14
-
15
- Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
16
-
17
- ### 1. Select File to Update
18
-
19
- Select `requirements.txt` to update by clicking on it in GitHub.
20
-
21
- <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
22
-
23
- ### 2. Click 'Edit this file'
24
-
25
- The button is in the top-right corner.
26
-
27
- <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
28
-
29
- ### 3. Make Changes
30
-
31
- Change the `matplotlib` version from `3.2.2` to `3.3`.
32
-
33
- <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
34
-
35
- ### 4. Preview Changes and Submit PR
36
-
37
- Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
38
-
39
- <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
40
-
41
- ### PR recommendations
42
-
43
- To allow your work to be integrated as seamlessly as possible, we advise you to:
44
-
45
- - ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
46
-
47
- <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
48
-
49
- - ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
50
-
51
- <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
52
-
53
- - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
54
-
55
- ## Submitting a Bug Report 🐛
56
-
57
- If you spot a problem with YOLOv5 please submit a Bug Report!
58
-
59
- For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need to get started.
60
-
61
- When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/). Your code that reproduces the problem should be:
62
-
63
- - ✅ **Minimal** – Use as little code as possible that still produces the same problem
64
- - ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
65
- - ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
66
-
67
- In addition to the above requirements, for [Ultralytics](https://www.ultralytics.com/) to provide assistance your code should be:
68
-
69
- - ✅ **Current** – Verify that your code is up-to-date with the current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits.
70
- - ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://www.ultralytics.com/) does not provide support for custom code ⚠️.
71
-
72
- If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) to help us better understand and diagnose your problem.
73
-
74
- ## License
75
-
76
- By contributing, you agree that your contributions will be licensed under the [AGPL-3.0 license](https://choosealicense.com/licenses/agpl-3.0/)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/LICENSE DELETED
@@ -1,661 +0,0 @@
1
- GNU AFFERO GENERAL PUBLIC LICENSE
2
- Version 3, 19 November 2007
3
-
4
- Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
- Everyone is permitted to copy and distribute verbatim copies
6
- of this license document, but changing it is not allowed.
7
-
8
- Preamble
9
-
10
- The GNU Affero General Public License is a free, copyleft license for
11
- software and other kinds of works, specifically designed to ensure
12
- cooperation with the community in the case of network server software.
13
-
14
- The licenses for most software and other practical works are designed
15
- to take away your freedom to share and change the works. By contrast,
16
- our General Public Licenses are intended to guarantee your freedom to
17
- share and change all versions of a program--to make sure it remains free
18
- software for all its users.
19
-
20
- When we speak of free software, we are referring to freedom, not
21
- price. Our General Public Licenses are designed to make sure that you
22
- have the freedom to distribute copies of free software (and charge for
23
- them if you wish), that you receive source code or can get it if you
24
- want it, that you can change the software or use pieces of it in new
25
- free programs, and that you know you can do these things.
26
-
27
- Developers that use our General Public Licenses protect your rights
28
- with two steps: (1) assert copyright on the software, and (2) offer
29
- you this License which gives you legal permission to copy, distribute
30
- and/or modify the software.
31
-
32
- A secondary benefit of defending all users' freedom is that
33
- improvements made in alternate versions of the program, if they
34
- receive widespread use, become available for other developers to
35
- incorporate. Many developers of free software are heartened and
36
- encouraged by the resulting cooperation. However, in the case of
37
- software used on network servers, this result may fail to come about.
38
- The GNU General Public License permits making a modified version and
39
- letting the public access it on a server without ever releasing its
40
- source code to the public.
41
-
42
- The GNU Affero General Public License is designed specifically to
43
- ensure that, in such cases, the modified source code becomes available
44
- to the community. It requires the operator of a network server to
45
- provide the source code of the modified version running there to the
46
- users of that server. Therefore, public use of a modified version, on
47
- a publicly accessible server, gives the public access to the source
48
- code of the modified version.
49
-
50
- An older license, called the Affero General Public License and
51
- published by Affero, was designed to accomplish similar goals. This is
52
- a different license, not a version of the Affero GPL, but Affero has
53
- released a new version of the Affero GPL which permits relicensing under
54
- this license.
55
-
56
- The precise terms and conditions for copying, distribution and
57
- modification follow.
58
-
59
- TERMS AND CONDITIONS
60
-
61
- 0. Definitions.
62
-
63
- "This License" refers to version 3 of the GNU Affero General Public License.
64
-
65
- "Copyright" also means copyright-like laws that apply to other kinds of
66
- works, such as semiconductor masks.
67
-
68
- "The Program" refers to any copyrightable work licensed under this
69
- License. Each licensee is addressed as "you". "Licensees" and
70
- "recipients" may be individuals or organizations.
71
-
72
- To "modify" a work means to copy from or adapt all or part of the work
73
- in a fashion requiring copyright permission, other than the making of an
74
- exact copy. The resulting work is called a "modified version" of the
75
- earlier work or a work "based on" the earlier work.
76
-
77
- A "covered work" means either the unmodified Program or a work based
78
- on the Program.
79
-
80
- To "propagate" a work means to do anything with it that, without
81
- permission, would make you directly or secondarily liable for
82
- infringement under applicable copyright law, except executing it on a
83
- computer or modifying a private copy. Propagation includes copying,
84
- distribution (with or without modification), making available to the
85
- public, and in some countries other activities as well.
86
-
87
- To "convey" a work means any kind of propagation that enables other
88
- parties to make or receive copies. Mere interaction with a user through
89
- a computer network, with no transfer of a copy, is not conveying.
90
-
91
- An interactive user interface displays "Appropriate Legal Notices"
92
- to the extent that it includes a convenient and prominently visible
93
- feature that (1) displays an appropriate copyright notice, and (2)
94
- tells the user that there is no warranty for the work (except to the
95
- extent that warranties are provided), that licensees may convey the
96
- work under this License, and how to view a copy of this License. If
97
- the interface presents a list of user commands or options, such as a
98
- menu, a prominent item in the list meets this criterion.
99
-
100
- 1. Source Code.
101
-
102
- The "source code" for a work means the preferred form of the work
103
- for making modifications to it. "Object code" means any non-source
104
- form of a work.
105
-
106
- A "Standard Interface" means an interface that either is an official
107
- standard defined by a recognized standards body, or, in the case of
108
- interfaces specified for a particular programming language, one that
109
- is widely used among developers working in that language.
110
-
111
- The "System Libraries" of an executable work include anything, other
112
- than the work as a whole, that (a) is included in the normal form of
113
- packaging a Major Component, but which is not part of that Major
114
- Component, and (b) serves only to enable use of the work with that
115
- Major Component, or to implement a Standard Interface for which an
116
- implementation is available to the public in source code form. A
117
- "Major Component", in this context, means a major essential component
118
- (kernel, window system, and so on) of the specific operating system
119
- (if any) on which the executable work runs, or a compiler used to
120
- produce the work, or an object code interpreter used to run it.
121
-
122
- The "Corresponding Source" for a work in object code form means all
123
- the source code needed to generate, install, and (for an executable
124
- work) run the object code and to modify the work, including scripts to
125
- control those activities. However, it does not include the work's
126
- System Libraries, or general-purpose tools or generally available free
127
- programs which are used unmodified in performing those activities but
128
- which are not part of the work. For example, Corresponding Source
129
- includes interface definition files associated with source files for
130
- the work, and the source code for shared libraries and dynamically
131
- linked subprograms that the work is specifically designed to require,
132
- such as by intimate data communication or control flow between those
133
- subprograms and other parts of the work.
134
-
135
- The Corresponding Source need not include anything that users
136
- can regenerate automatically from other parts of the Corresponding
137
- Source.
138
-
139
- The Corresponding Source for a work in source code form is that
140
- same work.
141
-
142
- 2. Basic Permissions.
143
-
144
- All rights granted under this License are granted for the term of
145
- copyright on the Program, and are irrevocable provided the stated
146
- conditions are met. This License explicitly affirms your unlimited
147
- permission to run the unmodified Program. The output from running a
148
- covered work is covered by this License only if the output, given its
149
- content, constitutes a covered work. This License acknowledges your
150
- rights of fair use or other equivalent, as provided by copyright law.
151
-
152
- You may make, run and propagate covered works that you do not
153
- convey, without conditions so long as your license otherwise remains
154
- in force. You may convey covered works to others for the sole purpose
155
- of having them make modifications exclusively for you, or provide you
156
- with facilities for running those works, provided that you comply with
157
- the terms of this License in conveying all material for which you do
158
- not control copyright. Those thus making or running the covered works
159
- for you must do so exclusively on your behalf, under your direction
160
- and control, on terms that prohibit them from making any copies of
161
- your copyrighted material outside their relationship with you.
162
-
163
- Conveying under any other circumstances is permitted solely under
164
- the conditions stated below. Sublicensing is not allowed; section 10
165
- makes it unnecessary.
166
-
167
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
-
169
- No covered work shall be deemed part of an effective technological
170
- measure under any applicable law fulfilling obligations under article
171
- 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
- similar laws prohibiting or restricting circumvention of such
173
- measures.
174
-
175
- When you convey a covered work, you waive any legal power to forbid
176
- circumvention of technological measures to the extent such circumvention
177
- is effected by exercising rights under this License with respect to
178
- the covered work, and you disclaim any intention to limit operation or
179
- modification of the work as a means of enforcing, against the work's
180
- users, your or third parties' legal rights to forbid circumvention of
181
- technological measures.
182
-
183
- 4. Conveying Verbatim Copies.
184
-
185
- You may convey verbatim copies of the Program's source code as you
186
- receive it, in any medium, provided that you conspicuously and
187
- appropriately publish on each copy an appropriate copyright notice;
188
- keep intact all notices stating that this License and any
189
- non-permissive terms added in accord with section 7 apply to the code;
190
- keep intact all notices of the absence of any warranty; and give all
191
- recipients a copy of this License along with the Program.
192
-
193
- You may charge any price or no price for each copy that you convey,
194
- and you may offer support or warranty protection for a fee.
195
-
196
- 5. Conveying Modified Source Versions.
197
-
198
- You may convey a work based on the Program, or the modifications to
199
- produce it from the Program, in the form of source code under the
200
- terms of section 4, provided that you also meet all of these conditions:
201
-
202
- a) The work must carry prominent notices stating that you modified
203
- it, and giving a relevant date.
204
-
205
- b) The work must carry prominent notices stating that it is
206
- released under this License and any conditions added under section
207
- 7. This requirement modifies the requirement in section 4 to
208
- "keep intact all notices".
209
-
210
- c) You must license the entire work, as a whole, under this
211
- License to anyone who comes into possession of a copy. This
212
- License will therefore apply, along with any applicable section 7
213
- additional terms, to the whole of the work, and all its parts,
214
- regardless of how they are packaged. This License gives no
215
- permission to license the work in any other way, but it does not
216
- invalidate such permission if you have separately received it.
217
-
218
- d) If the work has interactive user interfaces, each must display
219
- Appropriate Legal Notices; however, if the Program has interactive
220
- interfaces that do not display Appropriate Legal Notices, your
221
- work need not make them do so.
222
-
223
- A compilation of a covered work with other separate and independent
224
- works, which are not by their nature extensions of the covered work,
225
- and which are not combined with it such as to form a larger program,
226
- in or on a volume of a storage or distribution medium, is called an
227
- "aggregate" if the compilation and its resulting copyright are not
228
- used to limit the access or legal rights of the compilation's users
229
- beyond what the individual works permit. Inclusion of a covered work
230
- in an aggregate does not cause this License to apply to the other
231
- parts of the aggregate.
232
-
233
- 6. Conveying Non-Source Forms.
234
-
235
- You may convey a covered work in object code form under the terms
236
- of sections 4 and 5, provided that you also convey the
237
- machine-readable Corresponding Source under the terms of this License,
238
- in one of these ways:
239
-
240
- a) Convey the object code in, or embodied in, a physical product
241
- (including a physical distribution medium), accompanied by the
242
- Corresponding Source fixed on a durable physical medium
243
- customarily used for software interchange.
244
-
245
- b) Convey the object code in, or embodied in, a physical product
246
- (including a physical distribution medium), accompanied by a
247
- written offer, valid for at least three years and valid for as
248
- long as you offer spare parts or customer support for that product
249
- model, to give anyone who possesses the object code either (1) a
250
- copy of the Corresponding Source for all the software in the
251
- product that is covered by this License, on a durable physical
252
- medium customarily used for software interchange, for a price no
253
- more than your reasonable cost of physically performing this
254
- conveying of source, or (2) access to copy the
255
- Corresponding Source from a network server at no charge.
256
-
257
- c) Convey individual copies of the object code with a copy of the
258
- written offer to provide the Corresponding Source. This
259
- alternative is allowed only occasionally and noncommercially, and
260
- only if you received the object code with such an offer, in accord
261
- with subsection 6b.
262
-
263
- d) Convey the object code by offering access from a designated
264
- place (gratis or for a charge), and offer equivalent access to the
265
- Corresponding Source in the same way through the same place at no
266
- further charge. You need not require recipients to copy the
267
- Corresponding Source along with the object code. If the place to
268
- copy the object code is a network server, the Corresponding Source
269
- may be on a different server (operated by you or a third party)
270
- that supports equivalent copying facilities, provided you maintain
271
- clear directions next to the object code saying where to find the
272
- Corresponding Source. Regardless of what server hosts the
273
- Corresponding Source, you remain obligated to ensure that it is
274
- available for as long as needed to satisfy these requirements.
275
-
276
- e) Convey the object code using peer-to-peer transmission, provided
277
- you inform other peers where the object code and Corresponding
278
- Source of the work are being offered to the general public at no
279
- charge under subsection 6d.
280
-
281
- A separable portion of the object code, whose source code is excluded
282
- from the Corresponding Source as a System Library, need not be
283
- included in conveying the object code work.
284
-
285
- A "User Product" is either (1) a "consumer product", which means any
286
- tangible personal property which is normally used for personal, family,
287
- or household purposes, or (2) anything designed or sold for incorporation
288
- into a dwelling. In determining whether a product is a consumer product,
289
- doubtful cases shall be resolved in favor of coverage. For a particular
290
- product received by a particular user, "normally used" refers to a
291
- typical or common use of that class of product, regardless of the status
292
- of the particular user or of the way in which the particular user
293
- actually uses, or expects or is expected to use, the product. A product
294
- is a consumer product regardless of whether the product has substantial
295
- commercial, industrial or non-consumer uses, unless such uses represent
296
- the only significant mode of use of the product.
297
-
298
- "Installation Information" for a User Product means any methods,
299
- procedures, authorization keys, or other information required to install
300
- and execute modified versions of a covered work in that User Product from
301
- a modified version of its Corresponding Source. The information must
302
- suffice to ensure that the continued functioning of the modified object
303
- code is in no case prevented or interfered with solely because
304
- modification has been made.
305
-
306
- If you convey an object code work under this section in, or with, or
307
- specifically for use in, a User Product, and the conveying occurs as
308
- part of a transaction in which the right of possession and use of the
309
- User Product is transferred to the recipient in perpetuity or for a
310
- fixed term (regardless of how the transaction is characterized), the
311
- Corresponding Source conveyed under this section must be accompanied
312
- by the Installation Information. But this requirement does not apply
313
- if neither you nor any third party retains the ability to install
314
- modified object code on the User Product (for example, the work has
315
- been installed in ROM).
316
-
317
- The requirement to provide Installation Information does not include a
318
- requirement to continue to provide support service, warranty, or updates
319
- for a work that has been modified or installed by the recipient, or for
320
- the User Product in which it has been modified or installed. Access to a
321
- network may be denied when the modification itself materially and
322
- adversely affects the operation of the network or violates the rules and
323
- protocols for communication across the network.
324
-
325
- Corresponding Source conveyed, and Installation Information provided,
326
- in accord with this section must be in a format that is publicly
327
- documented (and with an implementation available to the public in
328
- source code form), and must require no special password or key for
329
- unpacking, reading or copying.
330
-
331
- 7. Additional Terms.
332
-
333
- "Additional permissions" are terms that supplement the terms of this
334
- License by making exceptions from one or more of its conditions.
335
- Additional permissions that are applicable to the entire Program shall
336
- be treated as though they were included in this License, to the extent
337
- that they are valid under applicable law. If additional permissions
338
- apply only to part of the Program, that part may be used separately
339
- under those permissions, but the entire Program remains governed by
340
- this License without regard to the additional permissions.
341
-
342
- When you convey a copy of a covered work, you may at your option
343
- remove any additional permissions from that copy, or from any part of
344
- it. (Additional permissions may be written to require their own
345
- removal in certain cases when you modify the work.) You may place
346
- additional permissions on material, added by you to a covered work,
347
- for which you have or can give appropriate copyright permission.
348
-
349
- Notwithstanding any other provision of this License, for material you
350
- add to a covered work, you may (if authorized by the copyright holders of
351
- that material) supplement the terms of this License with terms:
352
-
353
- a) Disclaiming warranty or limiting liability differently from the
354
- terms of sections 15 and 16 of this License; or
355
-
356
- b) Requiring preservation of specified reasonable legal notices or
357
- author attributions in that material or in the Appropriate Legal
358
- Notices displayed by works containing it; or
359
-
360
- c) Prohibiting misrepresentation of the origin of that material, or
361
- requiring that modified versions of such material be marked in
362
- reasonable ways as different from the original version; or
363
-
364
- d) Limiting the use for publicity purposes of names of licensors or
365
- authors of the material; or
366
-
367
- e) Declining to grant rights under trademark law for use of some
368
- trade names, trademarks, or service marks; or
369
-
370
- f) Requiring indemnification of licensors and authors of that
371
- material by anyone who conveys the material (or modified versions of
372
- it) with contractual assumptions of liability to the recipient, for
373
- any liability that these contractual assumptions directly impose on
374
- those licensors and authors.
375
-
376
- All other non-permissive additional terms are considered "further
377
- restrictions" within the meaning of section 10. If the Program as you
378
- received it, or any part of it, contains a notice stating that it is
379
- governed by this License along with a term that is a further
380
- restriction, you may remove that term. If a license document contains
381
- a further restriction but permits relicensing or conveying under this
382
- License, you may add to a covered work material governed by the terms
383
- of that license document, provided that the further restriction does
384
- not survive such relicensing or conveying.
385
-
386
- If you add terms to a covered work in accord with this section, you
387
- must place, in the relevant source files, a statement of the
388
- additional terms that apply to those files, or a notice indicating
389
- where to find the applicable terms.
390
-
391
- Additional terms, permissive or non-permissive, may be stated in the
392
- form of a separately written license, or stated as exceptions;
393
- the above requirements apply either way.
394
-
395
- 8. Termination.
396
-
397
- You may not propagate or modify a covered work except as expressly
398
- provided under this License. Any attempt otherwise to propagate or
399
- modify it is void, and will automatically terminate your rights under
400
- this License (including any patent licenses granted under the third
401
- paragraph of section 11).
402
-
403
- However, if you cease all violation of this License, then your
404
- license from a particular copyright holder is reinstated (a)
405
- provisionally, unless and until the copyright holder explicitly and
406
- finally terminates your license, and (b) permanently, if the copyright
407
- holder fails to notify you of the violation by some reasonable means
408
- prior to 60 days after the cessation.
409
-
410
- Moreover, your license from a particular copyright holder is
411
- reinstated permanently if the copyright holder notifies you of the
412
- violation by some reasonable means, this is the first time you have
413
- received notice of violation of this License (for any work) from that
414
- copyright holder, and you cure the violation prior to 30 days after
415
- your receipt of the notice.
416
-
417
- Termination of your rights under this section does not terminate the
418
- licenses of parties who have received copies or rights from you under
419
- this License. If your rights have been terminated and not permanently
420
- reinstated, you do not qualify to receive new licenses for the same
421
- material under section 10.
422
-
423
- 9. Acceptance Not Required for Having Copies.
424
-
425
- You are not required to accept this License in order to receive or
426
- run a copy of the Program. Ancillary propagation of a covered work
427
- occurring solely as a consequence of using peer-to-peer transmission
428
- to receive a copy likewise does not require acceptance. However,
429
- nothing other than this License grants you permission to propagate or
430
- modify any covered work. These actions infringe copyright if you do
431
- not accept this License. Therefore, by modifying or propagating a
432
- covered work, you indicate your acceptance of this License to do so.
433
-
434
- 10. Automatic Licensing of Downstream Recipients.
435
-
436
- Each time you convey a covered work, the recipient automatically
437
- receives a license from the original licensors, to run, modify and
438
- propagate that work, subject to this License. You are not responsible
439
- for enforcing compliance by third parties with this License.
440
-
441
- An "entity transaction" is a transaction transferring control of an
442
- organization, or substantially all assets of one, or subdividing an
443
- organization, or merging organizations. If propagation of a covered
444
- work results from an entity transaction, each party to that
445
- transaction who receives a copy of the work also receives whatever
446
- licenses to the work the party's predecessor in interest had or could
447
- give under the previous paragraph, plus a right to possession of the
448
- Corresponding Source of the work from the predecessor in interest, if
449
- the predecessor has it or can get it with reasonable efforts.
450
-
451
- You may not impose any further restrictions on the exercise of the
452
- rights granted or affirmed under this License. For example, you may
453
- not impose a license fee, royalty, or other charge for exercise of
454
- rights granted under this License, and you may not initiate litigation
455
- (including a cross-claim or counterclaim in a lawsuit) alleging that
456
- any patent claim is infringed by making, using, selling, offering for
457
- sale, or importing the Program or any portion of it.
458
-
459
- 11. Patents.
460
-
461
- A "contributor" is a copyright holder who authorizes use under this
462
- License of the Program or a work on which the Program is based. The
463
- work thus licensed is called the contributor's "contributor version".
464
-
465
- A contributor's "essential patent claims" are all patent claims
466
- owned or controlled by the contributor, whether already acquired or
467
- hereafter acquired, that would be infringed by some manner, permitted
468
- by this License, of making, using, or selling its contributor version,
469
- but do not include claims that would be infringed only as a
470
- consequence of further modification of the contributor version. For
471
- purposes of this definition, "control" includes the right to grant
472
- patent sublicenses in a manner consistent with the requirements of
473
- this License.
474
-
475
- Each contributor grants you a non-exclusive, worldwide, royalty-free
476
- patent license under the contributor's essential patent claims, to
477
- make, use, sell, offer for sale, import and otherwise run, modify and
478
- propagate the contents of its contributor version.
479
-
480
- In the following three paragraphs, a "patent license" is any express
481
- agreement or commitment, however denominated, not to enforce a patent
482
- (such as an express permission to practice a patent or covenant not to
483
- sue for patent infringement). To "grant" such a patent license to a
484
- party means to make such an agreement or commitment not to enforce a
485
- patent against the party.
486
-
487
- If you convey a covered work, knowingly relying on a patent license,
488
- and the Corresponding Source of the work is not available for anyone
489
- to copy, free of charge and under the terms of this License, through a
490
- publicly available network server or other readily accessible means,
491
- then you must either (1) cause the Corresponding Source to be so
492
- available, or (2) arrange to deprive yourself of the benefit of the
493
- patent license for this particular work, or (3) arrange, in a manner
494
- consistent with the requirements of this License, to extend the patent
495
- license to downstream recipients. "Knowingly relying" means you have
496
- actual knowledge that, but for the patent license, your conveying the
497
- covered work in a country, or your recipient's use of the covered work
498
- in a country, would infringe one or more identifiable patents in that
499
- country that you have reason to believe are valid.
500
-
501
- If, pursuant to or in connection with a single transaction or
502
- arrangement, you convey, or propagate by procuring conveyance of, a
503
- covered work, and grant a patent license to some of the parties
504
- receiving the covered work authorizing them to use, propagate, modify
505
- or convey a specific copy of the covered work, then the patent license
506
- you grant is automatically extended to all recipients of the covered
507
- work and works based on it.
508
-
509
- A patent license is "discriminatory" if it does not include within
510
- the scope of its coverage, prohibits the exercise of, or is
511
- conditioned on the non-exercise of one or more of the rights that are
512
- specifically granted under this License. You may not convey a covered
513
- work if you are a party to an arrangement with a third party that is
514
- in the business of distributing software, under which you make payment
515
- to the third party based on the extent of your activity of conveying
516
- the work, and under which the third party grants, to any of the
517
- parties who would receive the covered work from you, a discriminatory
518
- patent license (a) in connection with copies of the covered work
519
- conveyed by you (or copies made from those copies), or (b) primarily
520
- for and in connection with specific products or compilations that
521
- contain the covered work, unless you entered into that arrangement,
522
- or that patent license was granted, prior to 28 March 2007.
523
-
524
- Nothing in this License shall be construed as excluding or limiting
525
- any implied license or other defenses to infringement that may
526
- otherwise be available to you under applicable patent law.
527
-
528
- 12. No Surrender of Others' Freedom.
529
-
530
- If conditions are imposed on you (whether by court order, agreement or
531
- otherwise) that contradict the conditions of this License, they do not
532
- excuse you from the conditions of this License. If you cannot convey a
533
- covered work so as to satisfy simultaneously your obligations under this
534
- License and any other pertinent obligations, then as a consequence you may
535
- not convey it at all. For example, if you agree to terms that obligate you
536
- to collect a royalty for further conveying from those to whom you convey
537
- the Program, the only way you could satisfy both those terms and this
538
- License would be to refrain entirely from conveying the Program.
539
-
540
- 13. Remote Network Interaction; Use with the GNU General Public License.
541
-
542
- Notwithstanding any other provision of this License, if you modify the
543
- Program, your modified version must prominently offer all users
544
- interacting with it remotely through a computer network (if your version
545
- supports such interaction) an opportunity to receive the Corresponding
546
- Source of your version by providing access to the Corresponding Source
547
- from a network server at no charge, through some standard or customary
548
- means of facilitating copying of software. This Corresponding Source
549
- shall include the Corresponding Source for any work covered by version 3
550
- of the GNU General Public License that is incorporated pursuant to the
551
- following paragraph.
552
-
553
- Notwithstanding any other provision of this License, you have
554
- permission to link or combine any covered work with a work licensed
555
- under version 3 of the GNU General Public License into a single
556
- combined work, and to convey the resulting work. The terms of this
557
- License will continue to apply to the part which is the covered work,
558
- but the work with which it is combined will remain governed by version
559
- 3 of the GNU General Public License.
560
-
561
- 14. Revised Versions of this License.
562
-
563
- The Free Software Foundation may publish revised and/or new versions of
564
- the GNU Affero General Public License from time to time. Such new versions
565
- will be similar in spirit to the present version, but may differ in detail to
566
- address new problems or concerns.
567
-
568
- Each version is given a distinguishing version number. If the
569
- Program specifies that a certain numbered version of the GNU Affero General
570
- Public License "or any later version" applies to it, you have the
571
- option of following the terms and conditions either of that numbered
572
- version or of any later version published by the Free Software
573
- Foundation. If the Program does not specify a version number of the
574
- GNU Affero General Public License, you may choose any version ever published
575
- by the Free Software Foundation.
576
-
577
- If the Program specifies that a proxy can decide which future
578
- versions of the GNU Affero General Public License can be used, that proxy's
579
- public statement of acceptance of a version permanently authorizes you
580
- to choose that version for the Program.
581
-
582
- Later license versions may give you additional or different
583
- permissions. However, no additional obligations are imposed on any
584
- author or copyright holder as a result of your choosing to follow a
585
- later version.
586
-
587
- 15. Disclaimer of Warranty.
588
-
589
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
- HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
- OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
- PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
- IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
- ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
-
598
- 16. Limitation of Liability.
599
-
600
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
- WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
- THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
- GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
- USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
- DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
- EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
- SUCH DAMAGES.
609
-
610
- 17. Interpretation of Sections 15 and 16.
611
-
612
- If the disclaimer of warranty and limitation of liability provided
613
- above cannot be given local legal effect according to their terms,
614
- reviewing courts shall apply local law that most closely approximates
615
- an absolute waiver of all civil liability in connection with the
616
- Program, unless a warranty or assumption of liability accompanies a
617
- copy of the Program in return for a fee.
618
-
619
- END OF TERMS AND CONDITIONS
620
-
621
- How to Apply These Terms to Your New Programs
622
-
623
- If you develop a new program, and you want it to be of the greatest
624
- possible use to the public, the best way to achieve this is to make it
625
- free software which everyone can redistribute and change under these terms.
626
-
627
- To do so, attach the following notices to the program. It is safest
628
- to attach them to the start of each source file to most effectively
629
- state the exclusion of warranty; and each file should have at least
630
- the "copyright" line and a pointer to where the full notice is found.
631
-
632
- <one line to give the program's name and a brief idea of what it does.>
633
- Copyright (C) <year> <name of author>
634
-
635
- This program is free software: you can redistribute it and/or modify
636
- it under the terms of the GNU Affero General Public License as published by
637
- the Free Software Foundation, either version 3 of the License, or
638
- (at your option) any later version.
639
-
640
- This program is distributed in the hope that it will be useful,
641
- but WITHOUT ANY WARRANTY; without even the implied warranty of
642
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
- GNU Affero General Public License for more details.
644
-
645
- You should have received a copy of the GNU Affero General Public License
646
- along with this program. If not, see <https://www.gnu.org/licenses/>.
647
-
648
- Also add information on how to contact you by electronic and paper mail.
649
-
650
- If your software can interact with users remotely through a computer
651
- network, you should also make sure that it provides a way for users to
652
- get its source. For example, if your program is a web application, its
653
- interface could display a "Source" link that leads users to an archive
654
- of the code. There are many ways you could offer source, and different
655
- solutions will be better for different programs; see section 13 for the
656
- specific requirements.
657
-
658
- You should also get your employer (if you work as a programmer) or school,
659
- if any, to sign a "copyright disclaimer" for the program, if necessary.
660
- For more information on this, and how to apply and follow the GNU AGPL, see
661
- <https://www.gnu.org/licenses/>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/README.md DELETED
@@ -1,513 +0,0 @@
1
- <div align="center">
2
- <p>
3
- <a href="https://www.ultralytics.com/blog/all-you-need-to-know-about-ultralytics-yolo11-and-its-applications" target="_blank">
4
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
5
- </p>
6
-
7
- [中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
8
-
9
- <div>
10
- <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI Testing"></a>
11
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
12
- <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
13
- <a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
14
- <br>
15
- <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
16
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
17
- <a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
18
- </div>
19
- <br>
20
-
21
- Ultralytics YOLOv5 🚀 is a cutting-edge, state-of-the-art (SOTA) computer vision model developed by [Ultralytics](https://www.ultralytics.com/). Based on the [PyTorch](https://pytorch.org/) framework, YOLOv5 is renowned for its ease of use, speed, and accuracy. It incorporates insights and best practices from extensive research and development, making it a popular choice for a wide range of vision AI tasks, including [object detection](https://docs.ultralytics.com/tasks/detect/), [image segmentation](https://docs.ultralytics.com/tasks/segment/), and [image classification](https://docs.ultralytics.com/tasks/classify/).
22
-
23
- We hope the resources here help you get the most out of YOLOv5. Please browse the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for detailed information, raise an issue on [GitHub](https://github.com/ultralytics/yolov5/issues/new/choose) for support, and join our [Discord community](https://discord.com/invite/ultralytics) for questions and discussions!
24
-
25
- To request an Enterprise License, please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
26
-
27
- <div align="center">
28
- <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
29
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
30
- <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
31
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
32
- <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
33
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
34
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
35
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
36
- <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
37
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
38
- <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
39
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
40
- <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
41
- </div>
42
-
43
- </div>
44
- <br>
45
-
46
- ## 🚀 YOLO11: The Next Evolution
47
-
48
- We are excited to announce the launch of **Ultralytics YOLO11** 🚀, the latest advancement in our state-of-the-art (SOTA) vision models! Available now at the [Ultralytics YOLO GitHub repository](https://github.com/ultralytics/ultralytics), YOLO11 builds on our legacy of speed, precision, and ease of use. Whether you're tackling [object detection](https://docs.ultralytics.com/tasks/detect/), [instance segmentation](https://docs.ultralytics.com/tasks/segment/), [pose estimation](https://docs.ultralytics.com/tasks/pose/), [image classification](https://docs.ultralytics.com/tasks/classify/), or [oriented object detection (OBB)](https://docs.ultralytics.com/tasks/obb/), YOLO11 delivers the performance and versatility needed to excel in diverse applications.
49
-
50
- Get started today and unlock the full potential of YOLO11! Visit the [Ultralytics Docs](https://docs.ultralytics.com/) for comprehensive guides and resources:
51
-
52
- [![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics)
53
-
54
- ```bash
55
- # Install the ultralytics package
56
- pip install ultralytics
57
- ```
58
-
59
- <div align="center">
60
- <a href="https://www.ultralytics.com/yolo" target="_blank">
61
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="Ultralytics YOLO Performance Comparison"></a>
62
- </div>
63
-
64
- ## 📚 Documentation
65
-
66
- See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing, and deployment. See below for quickstart examples.
67
-
68
- <details open>
69
- <summary>Install</summary>
70
-
71
- Clone the repository and install dependencies in a [**Python>=3.8.0**](https://www.python.org/) environment. Ensure you have [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) installed.
72
-
73
- ```bash
74
- # Clone the YOLOv5 repository
75
- git clone https://github.com/ultralytics/yolov5
76
-
77
- # Navigate to the cloned directory
78
- cd yolov5
79
-
80
- # Install required packages
81
- pip install -r requirements.txt
82
- ```
83
-
84
- </details>
85
-
86
- <details open>
87
- <summary>Inference with PyTorch Hub</summary>
88
-
89
- Use YOLOv5 via [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) for inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) are automatically downloaded from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
90
-
91
- ```python
92
- import torch
93
-
94
- # Load a YOLOv5 model (options: yolov5n, yolov5s, yolov5m, yolov5l, yolov5x)
95
- model = torch.hub.load("ultralytics/yolov5", "yolov5s") # Default: yolov5s
96
-
97
- # Define the input image source (URL, local file, PIL image, OpenCV frame, numpy array, or list)
98
- img = "https://ultralytics.com/images/zidane.jpg" # Example image
99
-
100
- # Perform inference (handles batching, resizing, normalization automatically)
101
- results = model(img)
102
-
103
- # Process the results (options: .print(), .show(), .save(), .crop(), .pandas())
104
- results.print() # Print results to console
105
- results.show() # Display results in a window
106
- results.save() # Save results to runs/detect/exp
107
- ```
108
-
109
- </details>
110
-
111
- <details>
112
- <summary>Inference with detect.py</summary>
113
-
114
- The `detect.py` script runs inference on various sources. It automatically downloads [models](https://github.com/ultralytics/yolov5/tree/master/models) from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saves the results to the `runs/detect` directory.
115
-
116
- ```bash
117
- # Run inference using a webcam
118
- python detect.py --weights yolov5s.pt --source 0
119
-
120
- # Run inference on a local image file
121
- python detect.py --weights yolov5s.pt --source img.jpg
122
-
123
- # Run inference on a local video file
124
- python detect.py --weights yolov5s.pt --source vid.mp4
125
-
126
- # Run inference on a screen capture
127
- python detect.py --weights yolov5s.pt --source screen
128
-
129
- # Run inference on a directory of images
130
- python detect.py --weights yolov5s.pt --source path/to/images/
131
-
132
- # Run inference on a text file listing image paths
133
- python detect.py --weights yolov5s.pt --source list.txt
134
-
135
- # Run inference on a text file listing stream URLs
136
- python detect.py --weights yolov5s.pt --source list.streams
137
-
138
- # Run inference using a glob pattern for images
139
- python detect.py --weights yolov5s.pt --source 'path/to/*.jpg'
140
-
141
- # Run inference on a YouTube video URL
142
- python detect.py --weights yolov5s.pt --source 'https://youtu.be/LNwODJXcvt4'
143
-
144
- # Run inference on an RTSP, RTMP, or HTTP stream
145
- python detect.py --weights yolov5s.pt --source 'rtsp://example.com/media.mp4'
146
- ```
147
-
148
- </details>
149
-
150
- <details>
151
- <summary>Training</summary>
152
-
153
- The commands below demonstrate how to reproduce YOLOv5 [COCO dataset](https://docs.ultralytics.com/datasets/detect/coco/) results. Both [models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) are downloaded automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are approximately 1/2/4/6/8 days on a single [NVIDIA V100 GPU](https://www.nvidia.com/en-us/data-center/v100/). Using [Multi-GPU training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/) can significantly reduce training time. Use the largest `--batch-size` your hardware allows, or use `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). The batch sizes shown below are for V100-16GB GPUs.
154
-
155
- ```bash
156
- # Train YOLOv5n on COCO for 300 epochs
157
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
158
-
159
- # Train YOLOv5s on COCO for 300 epochs
160
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5s.yaml --batch-size 64
161
-
162
- # Train YOLOv5m on COCO for 300 epochs
163
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5m.yaml --batch-size 40
164
-
165
- # Train YOLOv5l on COCO for 300 epochs
166
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5l.yaml --batch-size 24
167
-
168
- # Train YOLOv5x on COCO for 300 epochs
169
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5x.yaml --batch-size 16
170
- ```
171
-
172
- <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" alt="YOLOv5 Training Results">
173
-
174
- </details>
175
-
176
- <details open>
177
- <summary>Tutorials</summary>
178
-
179
- - **[Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/)** 🚀 **RECOMMENDED**: Learn how to train YOLOv5 on your own datasets.
180
- - **[Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/)** ☘️: Improve your model's performance with expert tips.
181
- - **[Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)**: Speed up training using multiple GPUs.
182
- - **[PyTorch Hub Integration](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/)** 🌟 **NEW**: Easily load models using PyTorch Hub.
183
- - **[Model Export (TFLite, ONNX, CoreML, TensorRT)](https://docs.ultralytics.com/yolov5/tutorials/model_export/)** 🚀: Convert your models to various deployment formats like [ONNX](https://onnx.ai/) or [TensorRT](https://developer.nvidia.com/tensorrt).
184
- - **[NVIDIA Jetson Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/)** 🌟 **NEW**: Deploy YOLOv5 on [NVIDIA Jetson](https://developer.nvidia.com/embedded-computing) devices.
185
- - **[Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)**: Enhance prediction accuracy with TTA.
186
- - **[Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)**: Combine multiple models for better performance.
187
- - **[Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)**: Optimize models for size and speed.
188
- - **[Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)**: Automatically find the best training hyperparameters.
189
- - **[Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)**: Adapt pretrained models to new tasks efficiently using [transfer learning](https://www.ultralytics.com/glossary/transfer-learning).
190
- - **[Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/)** 🌟 **NEW**: Understand the YOLOv5 model architecture.
191
- - **[Ultralytics HUB Training](https://www.ultralytics.com/hub)** 🚀 **RECOMMENDED**: Train and deploy YOLO models using Ultralytics HUB.
192
- - **[ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)**: Integrate with [ClearML](https://clear.ml/) for experiment tracking.
193
- - **[Neural Magic DeepSparse Integration](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)**: Accelerate inference with DeepSparse.
194
- - **[Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/)** 🌟 **NEW**: Log experiments using [Comet ML](https://www.comet.com/).
195
-
196
- </details>
197
-
198
- ## 🧩 Integrations
199
-
200
- Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with partners like [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/), [Comet ML](https://docs.ultralytics.com/integrations/comet/), [Roboflow](https://docs.ultralytics.com/integrations/roboflow/), and [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow. Explore more at [Ultralytics Integrations](https://docs.ultralytics.com/integrations/).
201
-
202
- <a href="https://docs.ultralytics.com/integrations/" target="_blank">
203
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
204
- </a>
205
- <br>
206
- <br>
207
-
208
- <div align="center">
209
- <a href="https://www.ultralytics.com/hub">
210
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
211
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
212
- <a href="https://docs.ultralytics.com/integrations/weights-biases/">
213
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
214
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
215
- <a href="https://docs.ultralytics.com/integrations/comet/">
216
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
217
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
218
- <a href="https://docs.ultralytics.com/integrations/neural-magic/">
219
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
220
- </div>
221
-
222
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
223
- | :----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
224
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
225
-
226
- ## ⭐ Ultralytics HUB
227
-
228
- Experience seamless AI development with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the ultimate platform for building, training, and deploying [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) models. Visualize datasets, train [YOLOv5](https://docs.ultralytics.com/models/yolov5/) and [YOLOv8](https://docs.ultralytics.com/models/yolov8/) 🚀 models, and deploy them to real-world applications without writing any code. Transform images into actionable insights using our cutting-edge tools and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
229
-
230
- <a align="center" href="https://www.ultralytics.com/hub" target="_blank">
231
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB Platform Screenshot"></a>
232
-
233
- ## 🤔 Why YOLOv5?
234
-
235
- YOLOv5 is designed for simplicity and ease of use. We prioritize real-world performance and accessibility.
236
-
237
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png" alt="YOLOv5 Performance Chart"></p>
238
- <details>
239
- <summary>YOLOv5-P5 640 Figure</summary>
240
-
241
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png" alt="YOLOv5 P5 640 Performance Chart"></p>
242
- </details>
243
- <details>
244
- <summary>Figure Notes</summary>
245
-
246
- - **COCO AP val** denotes the [mean Average Precision (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map) at [Intersection over Union (IoU)](https://www.ultralytics.com/glossary/intersection-over-union-iou) thresholds from 0.5 to 0.95, measured on the 5,000-image [COCO val2017 dataset](https://docs.ultralytics.com/datasets/detect/coco/) across various inference sizes (256 to 1536 pixels).
247
- - **GPU Speed** measures the average inference time per image on the [COCO val2017 dataset](https://docs.ultralytics.com/datasets/detect/coco/) using an [AWS p3.2xlarge V100 instance](https://aws.amazon.com/ec2/instance-types/p3/) with a batch size of 32.
248
- - **EfficientDet** data is sourced from the [google/automl repository](https://github.com/google/automl) at batch size 8.
249
- - **Reproduce** these results using the command: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
250
-
251
- </details>
252
-
253
- ### Pretrained Checkpoints
254
-
255
- This table shows the performance metrics for various YOLOv5 models trained on the COCO dataset.
256
-
257
- | Model | Size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
258
- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
259
- | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
260
- | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
261
- | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
262
- | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
263
- | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
264
- | | | | | | | | | |
265
- | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
266
- | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
267
- | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
268
- | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
269
- | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [[TTA]](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
270
-
271
- <details>
272
- <summary>Table Notes</summary>
273
-
274
- - All checkpoints were trained for 300 epochs using default settings. Nano (n) and Small (s) models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyperparameters, while Medium (m), Large (l), and Extra-Large (x) models use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
275
- - **mAP<sup>val</sup>** values represent single-model, single-scale performance on the [COCO val2017 dataset](https://docs.ultralytics.com/datasets/detect/coco/).<br>Reproduce using: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
276
- - **Speed** metrics are averaged over COCO val images using an [AWS p3.2xlarge V100 instance](https://aws.amazon.com/ec2/instance-types/p3/). Non-Maximum Suppression (NMS) time (~1 ms/image) is not included.<br>Reproduce using: `python val.py --data coco.yaml --img 640 --task speed --batch 1`
277
- - **TTA** ([Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)) includes reflection and scale augmentations for improved accuracy.<br>Reproduce using: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
278
-
279
- </details>
280
-
281
- ## 🖼️ Segmentation
282
-
283
- The YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) introduced [instance segmentation](https://docs.ultralytics.com/tasks/segment/) models that achieve state-of-the-art performance. These models are designed for easy training, validation, and deployment. For full details, see the [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and explore the [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart examples.
284
-
285
- <details>
286
- <summary>Segmentation Checkpoints</summary>
287
-
288
- <div align="center">
289
- <a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
290
- <img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png" alt="YOLOv5 Segmentation Performance Chart"></a>
291
- </div>
292
-
293
- YOLOv5 segmentation models were trained on the [COCO dataset](https://docs.ultralytics.com/datasets/segment/coco/) for 300 epochs at an image size of 640 pixels using A100 GPUs. Models were exported to [ONNX](https://onnx.ai/) FP32 for CPU speed tests and [TensorRT](https://developer.nvidia.com/tensorrt) FP16 for GPU speed tests. All speed tests were conducted on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for reproducibility.
294
-
295
- | Model | Size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train Time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
296
- | ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
297
- | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
298
- | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
299
- | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
300
- | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
301
- | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
302
-
303
- - All checkpoints were trained for 300 epochs using the SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at an image size of 640 pixels, using default settings.<br>Training runs are logged at [https://wandb.ai/glenn-jocher/YOLOv5_v70_official](https://wandb.ai/glenn-jocher/YOLOv5_v70_official).
304
- - **Accuracy** values represent single-model, single-scale performance on the COCO dataset.<br>Reproduce using: `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
305
- - **Speed** metrics are averaged over 100 inference images using a [Colab Pro A100 High-RAM instance](https://colab.research.google.com/signup). Values indicate inference speed only (NMS adds approximately 1ms per image).<br>Reproduce using: `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
306
- - **Export** to ONNX (FP32) and TensorRT (FP16) was performed using `export.py`.<br>Reproduce using: `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
307
-
308
- </details>
309
-
310
- <details>
311
- <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
312
-
313
- ### Train
314
-
315
- YOLOv5 segmentation training supports automatic download of the [COCO128-seg dataset](https://docs.ultralytics.com/datasets/segment/coco8-seg/) via the `--data coco128-seg.yaml` argument. For the full [COCO-segments dataset](https://docs.ultralytics.com/datasets/segment/coco/), download it manually using `bash data/scripts/get_coco.sh --train --val --segments` and then train with `python train.py --data coco.yaml`.
316
-
317
- ```bash
318
- # Train on a single GPU
319
- python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
320
-
321
- # Train using Multi-GPU Distributed Data Parallel (DDP)
322
- python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
323
- ```
324
-
325
- ### Val
326
-
327
- Validate the mask [mean Average Precision (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map) of YOLOv5s-seg on the COCO dataset:
328
-
329
- ```bash
330
- # Download COCO validation segments split (780MB, 5000 images)
331
- bash data/scripts/get_coco.sh --val --segments
332
-
333
- # Validate the model
334
- python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640
335
- ```
336
-
337
- ### Predict
338
-
339
- Use the pretrained YOLOv5m-seg.pt model to perform segmentation on `bus.jpg`:
340
-
341
- ```bash
342
- # Run prediction
343
- python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
344
- ```
345
-
346
- ```python
347
- # Load model from PyTorch Hub (Note: Inference support might vary)
348
- model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5m-seg.pt")
349
- ```
350
-
351
- | ![Zidane Segmentation Example](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![Bus Segmentation Example](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
352
- | :-----------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------: |
353
-
354
- ### Export
355
-
356
- Export the YOLOv5s-seg model to ONNX and TensorRT formats:
357
-
358
- ```bash
359
- # Export model
360
- python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
361
- ```
362
-
363
- </details>
364
-
365
- ## 🏷️ Classification
366
-
367
- YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases/v6.2) introduced support for [image classification](https://docs.ultralytics.com/tasks/classify/) model training, validation, and deployment. Check the [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) for details and the [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart guides.
368
-
369
- <details>
370
- <summary>Classification Checkpoints</summary>
371
-
372
- <br>
373
-
374
- YOLOv5-cls classification models were trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) for 90 epochs using a 4xA100 instance. [ResNet](https://arxiv.org/abs/1512.03385) and [EfficientNet](https://arxiv.org/abs/1905.11946) models were trained alongside under identical settings for comparison. Models were exported to [ONNX](https://onnx.ai/) FP32 (CPU speed tests) and [TensorRT](https://developer.nvidia.com/tensorrt) FP16 (GPU speed tests). All speed tests were run on Google [Colab Pro](https://colab.research.google.com/signup) for reproducibility.
375
-
376
- | Model | Size<br><sup>(pixels) | Acc<br><sup>top1 | Acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
377
- | -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
378
- | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
379
- | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
380
- | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
381
- | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
382
- | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
383
- | | | | | | | | | |
384
- | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
385
- | [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
386
- | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
387
- | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
388
- | | | | | | | | | |
389
- | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
390
- | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
391
- | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
392
- | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
393
-
394
- <details>
395
- <summary>Table Notes (click to expand)</summary>
396
-
397
- - All checkpoints were trained for 90 epochs using the SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at an image size of 224 pixels, using default settings.<br>Training runs are logged at [https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2](https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2).
398
- - **Accuracy** values (top-1 and top-5) represent single-model, single-scale performance on the [ImageNet-1k dataset](https://docs.ultralytics.com/datasets/classify/imagenet/).<br>Reproduce using: `python classify/val.py --data ../datasets/imagenet --img 224`
399
- - **Speed** metrics are averaged over 100 inference images using a Google [Colab Pro V100 High-RAM instance](https://colab.research.google.com/signup).<br>Reproduce using: `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
400
- - **Export** to ONNX (FP32) and TensorRT (FP16) was performed using `export.py`.<br>Reproduce using: `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
401
-
402
- </details>
403
- </details>
404
-
405
- <details>
406
- <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
407
-
408
- ### Train
409
-
410
- YOLOv5 classification training supports automatic download for datasets like [MNIST](https://docs.ultralytics.com/datasets/classify/mnist/), [Fashion-MNIST](https://docs.ultralytics.com/datasets/classify/fashion-mnist/), [CIFAR10](https://docs.ultralytics.com/datasets/classify/cifar10/), [CIFAR100](https://docs.ultralytics.com/datasets/classify/cifar100/), [Imagenette](https://docs.ultralytics.com/datasets/classify/imagenette/), [Imagewoof](https://docs.ultralytics.com/datasets/classify/imagewoof/), and [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) using the `--data` argument. For example, start training on MNIST with `--data mnist`.
411
-
412
- ```bash
413
- # Train on a single GPU using CIFAR-100 dataset
414
- python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
415
-
416
- # Train using Multi-GPU DDP on ImageNet dataset
417
- python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
418
- ```
419
-
420
- ### Val
421
-
422
- Validate the accuracy of the YOLOv5m-cls model on the ImageNet-1k validation dataset:
423
-
424
- ```bash
425
- # Download ImageNet validation split (6.3GB, 50,000 images)
426
- bash data/scripts/get_imagenet.sh --val
427
-
428
- # Validate the model
429
- python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224
430
- ```
431
-
432
- ### Predict
433
-
434
- Use the pretrained YOLOv5s-cls.pt model to classify the image `bus.jpg`:
435
-
436
- ```bash
437
- # Run prediction
438
- python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
439
- ```
440
-
441
- ```python
442
- # Load model from PyTorch Hub
443
- model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt")
444
- ```
445
-
446
- ### Export
447
-
448
- Export trained YOLOv5s-cls, ResNet50, and EfficientNet_b0 models to ONNX and TensorRT formats:
449
-
450
- ```bash
451
- # Export models
452
- python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
453
- ```
454
-
455
- </details>
456
-
457
- ## ☁️ Environments
458
-
459
- Get started quickly with our pre-configured environments. Click the icons below for setup details.
460
-
461
- <div align="center">
462
- <a href="https://bit.ly/yolov5-paperspace-notebook" title="Run on Paperspace Gradient">
463
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
464
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
465
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb" title="Open in Google Colab">
466
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
467
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
468
- <a href="https://www.kaggle.com/models/ultralytics/yolov5" title="Open in Kaggle">
469
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
470
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
471
- <a href="https://hub.docker.com/r/ultralytics/yolov5" title="Pull Docker Image">
472
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
473
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
474
- <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/" title="AWS Quickstart Guide">
475
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
476
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
477
- <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/" title="GCP Quickstart Guide">
478
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
479
- </div>
480
-
481
- ## 🤝 Contribute
482
-
483
- We welcome your contributions! Making YOLOv5 accessible and effective is a community effort. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. Share your feedback through the [YOLOv5 Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). Thank you to all our contributors for making YOLOv5 better!
484
-
485
- [![Ultralytics open-source contributors](https://raw.githubusercontent.com/ultralytics/assets/main/im/image-contributors.png)](https://github.com/ultralytics/yolov5/graphs/contributors)
486
-
487
- ## 📜 License
488
-
489
- Ultralytics provides two licensing options to meet different needs:
490
-
491
- - **AGPL-3.0 License**: An [OSI-approved](https://opensource.org/license/agpl-v3) open-source license ideal for academic research, personal projects, and testing. It promotes open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
492
- - **Enterprise License**: Tailored for commercial applications, this license allows seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. For commercial use cases, please contact us via [Ultralytics Licensing](https://www.ultralytics.com/license).
493
-
494
- ## 📧 Contact
495
-
496
- For bug reports and feature requests related to YOLOv5, please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For general questions, discussions, and community support, join our [Discord server](https://discord.com/invite/ultralytics)!
497
-
498
- <br>
499
- <div align="center">
500
- <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
501
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
502
- <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
503
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
504
- <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
505
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
506
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
507
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
508
- <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
509
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
510
- <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
511
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
512
- <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
513
- </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/README.zh-CN.md DELETED
@@ -1,513 +0,0 @@
1
- <div align="center">
2
- <p>
3
- <a href="https://www.ultralytics.com/blog/all-you-need-to-know-about-ultralytics-yolo11-and-its-applications" target="_blank">
4
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO 横幅"></a>
5
- </p>
6
-
7
- [中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
8
-
9
- <div>
10
- <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI 测试"></a>
11
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 引用"></a>
12
- <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker 拉取次数"></a>
13
- <a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics 论坛" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
14
- <br>
15
- <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="在 Gradient 上运行"></a>
16
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a>
17
- <a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="在 Kaggle 中打开"></a>
18
- </div>
19
- <br>
20
-
21
- Ultralytics YOLOv5 🚀 是由 [Ultralytics](https://www.ultralytics.com/) 开发的尖端、达到业界顶尖水平(SOTA)的计算机视觉模型。基于 [PyTorch](https://pytorch.org/) 框架,YOLOv5 以其易用性、速度和准确性而闻名。它融合了广泛研究和开发的见解与最佳实践,使其成为各种视觉 AI 任务的热门选择,包括[目标检测](https://docs.ultralytics.com/tasks/detect/)、[图像分割](https://docs.ultralytics.com/tasks/segment/)和[图像分类](https://docs.ultralytics.com/tasks/classify/)。
22
-
23
- 我们希望这里的资源能帮助您充分利用 YOLOv5。请浏览 [YOLOv5 文档](https://docs.ultralytics.com/yolov5/)获取详细信息,在 [GitHub](https://github.com/ultralytics/yolov5/issues/new/choose) 上提出 issue 以获得支持,并加入我们的 [Discord 社区](https://discord.com/invite/ultralytics)进行提问和讨论!
24
-
25
- 如需申请企业许可证,请填写 [Ultralytics 授权许可](https://www.ultralytics.com/license) 表格。
26
-
27
- <div align="center">
28
- <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
29
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
30
- <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
31
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
32
- <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
33
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
34
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
35
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
36
- <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
37
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
38
- <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
39
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
40
- <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
41
- </div>
42
-
43
- </div>
44
- <br>
45
-
46
- ## 🚀 YOLO11:下一代进化
47
-
48
- 我们激动地宣布推出 **Ultralytics YOLO11** 🚀,这是我们业界顶尖(SOTA)视觉模型的最新进展!YOLO11 现已在 [Ultralytics YOLO GitHub 仓库](https://github.com/ultralytics/ultralytics)发布,它继承了我们速度快、精度高和易于使用的传统。无论您是处理[目标检测](https://docs.ultralytics.com/tasks/detect/)、[实例分割](https://docs.ultralytics.com/tasks/segment/)、[姿态估计](https://docs.ultralytics.com/tasks/pose/)、[图像分类](https://docs.ultralytics.com/tasks/classify/)还是[旋转目标检测 (OBB)](https://docs.ultralytics.com/tasks/obb/),YOLO11 都能提供在多样化应用中脱颖而出所需的性能和多功能性。
49
-
50
- 立即开始,释放 YOLO11 的全部潜力!访问 [Ultralytics 文档](https://docs.ultralytics.com/)获取全面的指南和资源:
51
-
52
- [![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics)
53
-
54
- ```bash
55
- # 安装 ultralytics 包
56
- pip install ultralytics
57
- ```
58
-
59
- <div align="center">
60
- <a href="https://www.ultralytics.com/yolo" target="_blank">
61
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="Ultralytics YOLO 性能比较"></a>
62
- </div>
63
-
64
- ## 📚 文档
65
-
66
- 请参阅 [YOLOv5 文档](https://docs.ultralytics.com/yolov5/),了解有关训练、测试和部署的完整文档。请参阅下方的快速入门示例。
67
-
68
- <details open>
69
- <summary>安装</summary>
70
-
71
- 克隆仓库并在 [**Python>=3.8.0**](https://www.python.org/) 环境中安装依赖项。确保您已安装 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/)。
72
-
73
- ```bash
74
- # 克隆 YOLOv5 仓库
75
- git clone https://github.com/ultralytics/yolov5
76
-
77
- # 导航到克隆的目录
78
- cd yolov5
79
-
80
- # 安装所需的包
81
- pip install -r requirements.txt
82
- ```
83
-
84
- </details>
85
-
86
- <details open>
87
- <summary>使用 PyTorch Hub 进行推理</summary>
88
-
89
- 通过 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 使用 YOLOv5 进行推理。[模型](https://github.com/ultralytics/yolov5/tree/master/models) 会自动从最新的 YOLOv5 [发布版本](https://github.com/ultralytics/yolov5/releases)下载。
90
-
91
- ```python
92
- import torch
93
-
94
- # 加载 YOLOv5 模型(选项:yolov5n, yolov5s, yolov5m, yolov5l, yolov5x)
95
- model = torch.hub.load("ultralytics/yolov5", "yolov5s") # 默认:yolov5s
96
-
97
- # 定义输入图像源(URL、本地文件、PIL 图像、OpenCV 帧、numpy 数组或列表)
98
- img = "https://ultralytics.com/images/zidane.jpg" # 示例图像
99
-
100
- # 执行推理(自动处理批处理、调整大小、归一化)
101
- results = model(img)
102
-
103
- # 处理结果(选项:.print(), .show(), .save(), .crop(), .pandas())
104
- results.print() # 将结果打印到控制台
105
- results.show() # 在窗口中显示结果
106
- results.save() # 将结果保存到 runs/detect/exp
107
- ```
108
-
109
- </details>
110
-
111
- <details>
112
- <summary>使用 detect.py 进行推理</summary>
113
-
114
- `detect.py` 脚本在各种来源上运行推理。它会自动从最新的 YOLOv5 [发布版本](https://github.com/ultralytics/yolov5/releases)下载[模型](https://github.com/ultralytics/yolov5/tree/master/models),并将结果保存到 `runs/detect` 目录。
115
-
116
- ```bash
117
- # 使用网络摄像头运行推理
118
- python detect.py --weights yolov5s.pt --source 0
119
-
120
- # 对本地图像文件运行推理
121
- python detect.py --weights yolov5s.pt --source img.jpg
122
-
123
- # 对本地视频文件运行推理
124
- python detect.py --weights yolov5s.pt --source vid.mp4
125
-
126
- # 对屏幕截图运行推理
127
- python detect.py --weights yolov5s.pt --source screen
128
-
129
- # 对图像目录运行推理
130
- python detect.py --weights yolov5s.pt --source path/to/images/
131
-
132
- # 对列出图像路径的文本文件运行推理
133
- python detect.py --weights yolov5s.pt --source list.txt
134
-
135
- # 对列出流 URL 的文本文件运行推理
136
- python detect.py --weights yolov5s.pt --source list.streams
137
-
138
- # 使用 glob 模式对图像运行推理
139
- python detect.py --weights yolov5s.pt --source 'path/to/*.jpg'
140
-
141
- # 对 YouTube 视频 URL 运行推理
142
- python detect.py --weights yolov5s.pt --source 'https://youtu.be/LNwODJXcvt4'
143
-
144
- # 对 RTSP、RTMP 或 HTTP 流运行推理
145
- python detect.py --weights yolov5s.pt --source 'rtsp://example.com/media.mp4'
146
- ```
147
-
148
- </details>
149
-
150
- <details>
151
- <summary>训练</summary>
152
-
153
- 以下命令演示了如何复现 YOLOv5 在 [COCO 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上的结果。[模型](https://github.com/ultralytics/yolov5/tree/master/models)和[数据集](https://github.com/ultralytics/yolov5/tree/master/data)都会自动从最新的 YOLOv5 [发布版本](https://github.com/ultralytics/yolov5/releases)下载。YOLOv5n/s/m/l/x 的训练时间在单个 [NVIDIA V100 GPU](https://www.nvidia.com/en-us/data-center/v100/) 上大约需要 1/2/4/6/8 天。使用[多 GPU 训练](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)可以显著减少训练时间。请使用硬件允许的最大 `--batch-size`,或使用 `--batch-size -1` 以启用 YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092)。下面显示的批处理大小适用于 V100-16GB GPU。
154
-
155
- ```bash
156
- # 在 COCO 上训练 YOLOv5n 300 个周期
157
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
158
-
159
- # 在 COCO 上训练 YOLOv5s 300 个周期
160
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5s.yaml --batch-size 64
161
-
162
- # 在 COCO 上训练 YOLOv5m 300 个周期
163
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5m.yaml --batch-size 40
164
-
165
- # 在 COCO 上训练 YOLOv5l 300 个周期
166
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5l.yaml --batch-size 24
167
-
168
- # 在 COCO 上训练 YOLOv5x 300 个周期
169
- python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5x.yaml --batch-size 16
170
- ```
171
-
172
- <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" alt="YOLOv5 训练结果">
173
-
174
- </details>
175
-
176
- <details open>
177
- <summary>教程</summary>
178
-
179
- - **[训练自定义数据](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/)** 🚀 **推荐**:学习如何在您自己的数据集上训练 YOLOv5。
180
- - **[获得最佳训练结果的技巧](https://docs.ultralytics.com/guides/model-training-tips/)** ☘️:利用专家技巧提升模型性能。
181
- - **[多 GPU 训练](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)**:使用多个 GPU 加速训练。
182
- - **[PyTorch Hub 集成](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/)** 🌟 **新增**:使用 PyTorch Hub 轻松加载模型。
183
- - **[模型导出 (TFLite, ONNX, CoreML, TensorRT)](https://docs.ultralytics.com/yolov5/tutorials/model_export/)** 🚀:将您的模型转换为各种部署格式,如 [ONNX](https://onnx.ai/) 或 [TensorRT](https://developer.nvidia.com/tensorrt)。
184
- - **[NVIDIA Jetson 部署](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/)** 🌟 **新增**:在 [NVIDIA Jetson](https://developer.nvidia.com/embedded-computing) 设备上部署 YOLOv5。
185
- - **[测试时增强 (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)**:使用 TTA 提高预测准确性。
186
- - **[模型集成](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)**:组合多个模型以获得更好的性能。
187
- - **[模型剪枝/稀疏化](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)**:优化模型的大小和速度。
188
- - **[超参数进化](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)**:自动找到最佳训练超参数。
189
- - **[使用冻结层的迁移学习](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)**:使用[迁移学习](https://www.ultralytics.com/glossary/transfer-learning)高效地将预训练模型应用于新任务。
190
- - **[架构摘要](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/)** 🌟 **新增**:了解 YOLOv5 模型架构。
191
- - **[Ultralytics HUB 训练](https://www.ultralytics.com/hub)** 🚀 **推荐**:使用 Ultralytics HUB 训练和部署 YOLO 模型。
192
- - **[ClearML 日志记录](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)**:与 [ClearML](https://clear.ml/) 集成以进行实验跟踪。
193
- - **[Neural Magic DeepSparse 集成](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)**:使用 DeepSparse 加速推理。
194
- - **[Comet 日志记录](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/)** 🌟 **新增**:使用 [Comet ML](https://www.comet.com/) 记录实验。
195
-
196
- </details>
197
-
198
- ## 🧩 集成
199
-
200
- 我们与领先 AI 平台的关键集成扩展了 Ultralytics 产品的功能,增强了诸如数据集标注、训练、可视化和模型管理等任务。了解 Ultralytics 如何与 [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/)、[Comet ML](https://docs.ultralytics.com/integrations/comet/)、[Roboflow](https://docs.ultralytics.com/integrations/roboflow/) 和 [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/) 等合作伙伴协作,优化您的 AI 工作流程。在 [Ultralytics 集成](https://docs.ultralytics.com/integrations/) 探索更多信息。
201
-
202
- <a href="https://docs.ultralytics.com/integrations/" target="_blank">
203
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics 主动学习集成">
204
- </a>
205
- <br>
206
- <br>
207
-
208
- <div align="center">
209
- <a href="https://www.ultralytics.com/hub">
210
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
211
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
212
- <a href="https://docs.ultralytics.com/integrations/weights-biases/">
213
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
214
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
215
- <a href="https://docs.ultralytics.com/integrations/comet/">
216
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
217
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
218
- <a href="https://docs.ultralytics.com/integrations/neural-magic/">
219
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
220
- </div>
221
-
222
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
223
- | :------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------: |
224
- | 简化 YOLO 工作流程:使用 [Ultralytics HUB](https://hub.ultralytics.com) 轻松标注、训练和部署。立即试用! | 使用 [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/) 跟踪实验、超参数和结果。 | 永久免费的 [Comet ML](https://docs.ultralytics.com/integrations/comet/) 让您保存 YOLO 模型、恢复训练并交互式地可视化预测。 | 使用 [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/) 将 YOLO 推理速度提高多达 6 倍。 |
225
-
226
- ## ⭐ Ultralytics HUB
227
-
228
- 通过 [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐ 体验无缝的 AI 开发,这是构建、训练和部署[计算机视觉](https://www.ultralytics.com/glossary/computer-vision-cv)模型的终极平台。可视化数据集,训练 [YOLOv5](https://docs.ultralytics.com/models/yolov5/) 和 [YOLOv8](https://docs.ultralytics.com/models/yolov8/) 🚀 模型,并将它们部署到实际应用中,无需编写任何代码。使用我们尖端的工具和用户友好的 [Ultralytics App](https://www.ultralytics.com/app-install) 将图像转化为可操作的见解。今天就**免费**开始您的旅程吧!
229
-
230
- <a align="center" href="https://www.ultralytics.com/hub" target="_blank">
231
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB 平台截图"></a>
232
-
233
- ## 🤔 为何选择 YOLOv5?
234
-
235
- YOLOv5 的设计旨在简单易用。我们优先考虑实际性能和可访问性。
236
-
237
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png" alt="YOLOv5 性能图表"></p>
238
- <details>
239
- <summary>YOLOv5-P5 640 图表</summary>
240
-
241
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png" alt="YOLOv5 P5 640 性能图表"></p>
242
- </details>
243
- <details>
244
- <summary>图表说明</summary>
245
-
246
- - **COCO AP val** 表示在 [交并比 (IoU)](https://www.ultralytics.com/glossary/intersection-over-union-iou) 阈值从 0.5 到 0.95 范围内的[平均精度均值 (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map),在包含 5000 张图像的 [COCO val2017 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上,使用各种推理尺寸(256 到 1536 像素)测量得出。
247
- - **GPU Speed** 使用批处理大小为 32 的 [AWS p3.2xlarge V100 实例](https://aws.amazon.com/ec2/instance-types/p3/),测量在 [COCO val2017 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上每张图像的平均推理时间���
248
- - **EfficientDet** 数据来源于 [google/automl 仓库](https://github.com/google/automl),批处理大小为 8。
249
- - **复现**这些结果请使用命令:`python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
250
-
251
- </details>
252
-
253
- ### 预训练权重
254
-
255
- 此表显示了在 COCO 数据集上训练的各种 YOLOv5 模型的性能指标。
256
-
257
- | 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 速度<br><sup>CPU b1<br>(毫秒) | 速度<br><sup>V100 b1<br>(毫秒) | 速度<br><sup>V100 b32<br>(毫秒) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
258
- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------- | -------------------- | ----------------- | ----------------------------- | ------------------------------ | ------------------------------- | ---------------- | ---------------------- |
259
- | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
260
- | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
261
- | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
262
- | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
263
- | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
264
- | | | | | | | | | |
265
- | [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
266
- | [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
267
- | [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
268
- | [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
269
- | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [[TTA]](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
270
-
271
- <details>
272
- <summary>表格说明</summary>
273
-
274
- - 所有预训练权重均使用默认设置训练了 300 个周期。Nano (n) 和 Small (s) 模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) 超参数,而 Medium (m)、Large (l) 和 Extra-Large (x) 模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml)。
275
- - **mAP<sup>val</sup>** 值表示在 [COCO val2017 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上的单模型、单尺度性能。<br>复现请使用:`python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
276
- - **速度**指标是在 [AWS p3.2xlarge V100 实例](https://aws.amazon.com/ec2/instance-types/p3/)上对 COCO val 图像进行平均测量的。不包括非极大值抑制 (NMS) 时间(约 1 毫秒/图像)。<br>复现请使用:`python val.py --data coco.yaml --img 640 --task speed --batch 1`
277
- - **TTA** ([测试时增强](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)) 包括反射和尺度增强以提高准确性。<br>复现请使用:`python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
278
-
279
- </details>
280
-
281
- ## 🖼️ 分割
282
-
283
- YOLOv5 [v7.0 版本](https://github.com/ultralytics/yolov5/releases/v7.0) 引入了[实例分割](https://docs.ultralytics.com/tasks/segment/)模型,达到了业界顶尖的性能。这些模型设计用于轻松训练、验证和部署。有关完整详细信息,请参阅[发布说明](https://github.com/ultralytics/yolov5/releases/v7.0),并探索 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb)以获取快速入门示例。
284
-
285
- <details>
286
- <summary>分割预训练权重</summary>
287
-
288
- <div align="center">
289
- <a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
290
- <img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png" alt="YOLOv5 分割性能图表"></a>
291
- </div>
292
-
293
- YOLOv5 分割模型在 [COCO 数据集](https://docs.ultralytics.com/datasets/segment/coco/)上使用 A100 GPU 以 640 像素的图像大小训练了 300 个周期。模型导出为 [ONNX](https://onnx.ai/) FP32 用于 CPU 速度测试,导出为 [TensorRT](https://developer.nvidia.com/tensorrt) FP16 用于 GPU 速度测试。所有速度测试均在 Google [Colab Pro](https://colab.research.google.com/signup) 笔记本上进行,以确保可复现性。
294
-
295
- | 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时间<br><sup>300 周期<br>A100 (小时) | 速度<br><sup>ONNX CPU<br>(毫秒) | 速度<br><sup>TRT A100<br>(毫秒) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
296
- | ------------------------------------------------------------------------------------------ | ------------------- | -------------------- | --------------------- | ---------------------------------------- | ------------------------------- | ------------------------------- | ---------------- | ---------------------- |
297
- | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
298
- | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
299
- | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
300
- | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
301
- | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
302
-
303
- - 所有预训练权重均使用 SGD 优化器,`lr0=0.01` 和 `weight_decay=5e-5`,在 640 像素的图像大小下,使用默认设置训练了 300 个周期。<br>训练运行记录在 [https://wandb.ai/glenn-jocher/YOLOv5_v70_official](https://wandb.ai/glenn-jocher/YOLOv5_v70_official)。
304
- - **准确度**值表示在 COCO 数据集上的单模型、单尺度性能。<br>复现请使用:`python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
305
- - **速度**指标是在 [Colab Pro A100 High-RAM 实例](https://colab.research.google.com/signup)上对 100 张推理图像进行平均测量的。值仅表示推理速度(NMS 约增加 1 毫秒/图像)。<br>复现请使用:`python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
306
- - **导出**到 ONNX (FP32) 和 TensorRT (FP16) 是使用 `export.py` 完成的。<br>复现请使用:`python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
307
-
308
- </details>
309
-
310
- <details>
311
- <summary>分割使用示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a></summary>
312
-
313
- ### 训练
314
-
315
- YOLOv5 分割训练支持通过 `--data coco128-seg.yaml` 参数自动下载 [COCO128-seg 数据集](https://docs.ultralytics.com/datasets/segment/coco8-seg/)。对于完整的 [COCO-segments 数据集](https://docs.ultralytics.com/datasets/segment/coco/),请使用 `bash data/scripts/get_coco.sh --train --val --segments` 手动下载,然后使用 `python train.py --data coco.yaml` 进行训练。
316
-
317
- ```bash
318
- # 在单个 GPU 上训练
319
- python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
320
-
321
- # 使用多 GPU 分布式数据并行 (DDP) 进行训练
322
- python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
323
- ```
324
-
325
- ### 验证
326
-
327
- 在 COCO 数据集上验证 YOLOv5s-seg 的掩码[平均精度均值 (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map):
328
-
329
- ```bash
330
- # 下载 COCO 验证分割集 (780MB, 5000 张图像)
331
- bash data/scripts/get_coco.sh --val --segments
332
-
333
- # 验证模型
334
- python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640
335
- ```
336
-
337
- ### 预测
338
-
339
- 使用预训练的 YOLOv5m-seg.pt 模型对 `bus.jpg` 执行分割:
340
-
341
- ```bash
342
- # 运行预测
343
- python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
344
- ```
345
-
346
- ```python
347
- # 从 PyTorch Hub 加载模型(注意:推理支持可能有所不同)
348
- model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5m-seg.pt")
349
- ```
350
-
351
- | ![Zidane 分割示例](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![Bus 分割示例](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
352
- | :-----------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------: |
353
-
354
- ### 导出
355
-
356
- 将 YOLOv5s-seg 模型导出为 ONNX 和 TensorRT 格式:
357
-
358
- ```bash
359
- # 导出模型
360
- python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
361
- ```
362
-
363
- </details>
364
-
365
- ## 🏷️ 分类
366
-
367
- YOLOv5 [v6.2 版本](https://github.com/ultralytics/yolov5/releases/v6.2) 引入了对[图像分类](https://docs.ultralytics.com/tasks/classify/)模型训练、验证和部署的支持。请查看[发布说明](https://github.com/ultralytics/yolov5/releases/v6.2)了解详细信息,并参阅 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb)获取快速入门指南。
368
-
369
- <details>
370
- <summary>分类预训练权重</summary>
371
-
372
- <br>
373
-
374
- YOLOv5-cls 分类模型在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 上使用 4xA100 实例训练了 90 个周期。[ResNet](https://arxiv.org/abs/1512.03385) 和 [EfficientNet](https://arxiv.org/abs/1905.11946) 模型在相同设置下一起训练以进行比较。模型导出为 [ONNX](https://onnx.ai/) FP32(用于 CPU 速度测试)和 [TensorRT](https://developer.nvidia.com/tensorrt) FP16(用于 GPU 速度测试)。所有速度测试均在 Google [Colab Pro](https://colab.research.google.com/signup) 上运行,以确保可复现性。
375
-
376
- | 模型 | 尺寸<br><sup>(像素) | 准确率<br><sup>top1 | 准确率<br><sup>top5 | 训练<br><sup>90 周期<br>4xA100 (小时) | 速度<br><sup>ONNX CPU<br>(毫秒) | 速度<br><sup>TensorRT V100<br>(毫秒) | 参数<br><sup>(M) | FLOPs<br><sup>@224 (B) |
377
- | -------------------------------------------------------------------------------------------------- | ------------------- | ------------------- | ------------------- | ------------------------------------- | ------------------------------- | ------------------------------------ | ---------------- | ---------------------- |
378
- | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
379
- | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
380
- | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
381
- | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
382
- | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
383
- | | | | | | | | | |
384
- | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
385
- | [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
386
- | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
387
- | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
388
- | | | | | | | | | |
389
- | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
390
- | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
391
- | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
392
- | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
393
-
394
- <details>
395
- <summary>表格说明(点击展开)</summary>
396
-
397
- - 所有预训练权重均使用 SGD 优化器,`lr0=0.001` 和 `weight_decay=5e-5`,在 224 像素的图像大小下,使用默认设置训练了 90 个周期。<br>训练运行记录在 [https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2](https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2)。
398
- - **准确度**值(top-1 和 top-5)表示在 [ImageNet-1k 数据集](https://docs.ultralytics.com/datasets/classify/imagenet/)上的单模型、单尺度性能。<br>复现请使用:`python classify/val.py --data ../datasets/imagenet --img 224`
399
- - **速度**指标是在 Google [Colab Pro V100 High-RAM 实例](https://colab.research.google.com/signup)上对 100 张推理图像进行平均测量的。<br>复现请使用:`python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
400
- - **导出**到 ONNX (FP32) 和 TensorRT (FP16) 是使用 `export.py` 完成的。<br>复现请使用:`python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
401
-
402
- </details>
403
- </details>
404
-
405
- <details>
406
- <summary>分类使用示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a></summary>
407
-
408
- ### 训练
409
-
410
- YOLOv5 分类训练支持使用 `--data` 参数自动下载诸如 [MNIST](https://docs.ultralytics.com/datasets/classify/mnist/)、[Fashion-MNIST](https://docs.ultralytics.com/datasets/classify/fashion-mnist/)、[CIFAR10](https://docs.ultralytics.com/datasets/classify/cifar10/)、[CIFAR100](https://docs.ultralytics.com/datasets/classify/cifar100/)、[Imagenette](https://docs.ultralytics.com/datasets/classify/imagenette/)、[Imagewoof](https://docs.ultralytics.com/datasets/classify/imagewoof/) 和 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 等数据集。例如,使用 `--data mnist` 开始在 MNIST 上训练。
411
-
412
- ```bash
413
- # 使用 CIFAR-100 数据集在单个 GPU 上训练
414
- python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
415
-
416
- # 在 ImageNet 数据集上使用多 GPU DDP 进行训练
417
- python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
418
- ```
419
-
420
- ### 验证
421
-
422
- 在 ImageNet-1k 验证数据集上验证 YOLOv5m-cls 模型的准确性:
423
-
424
- ```bash
425
- # 下载 ImageNet 验证集 (6.3GB, 50,000 张图像)
426
- bash data/scripts/get_imagenet.sh --val
427
-
428
- # 验证模型
429
- python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224
430
- ```
431
-
432
- ### 预测
433
-
434
- 使用预训练的 YOLOv5s-cls.pt 模型对图像 `bus.jpg` 进行分类:
435
-
436
- ```bash
437
- # 运行预测
438
- python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
439
- ```
440
-
441
- ```python
442
- # 从 PyTorch Hub 加载模型
443
- model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt")
444
- ```
445
-
446
- ### 导出
447
-
448
- 将训练好的 YOLOv5s-cls、ResNet50 和 EfficientNet_b0 模型导出为 ONNX 和 TensorRT 格式:
449
-
450
- ```bash
451
- # 导出模型
452
- python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
453
- ```
454
-
455
- </details>
456
-
457
- ## ☁️ 环境
458
-
459
- 使用我们预配置的环境快速开始。点击下面的图标查看设置详情。
460
-
461
- <div align="center">
462
- <a href="https://bit.ly/yolov5-paperspace-notebook" title="在 Paperspace Gradient 上运行">
463
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
464
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
465
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb" title="在 Google Colab 中打开">
466
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
467
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
468
- <a href="https://www.kaggle.com/models/ultralytics/yolov5" title="在 Kaggle 中打开">
469
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
470
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
471
- <a href="https://hub.docker.com/r/ultralytics/yolov5" title="拉取 Docker 镜像">
472
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
473
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
474
- <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/" title="AWS 快速入门指南">
475
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
476
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
477
- <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/" title="GCP 快速入门指南">
478
- <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
479
- </div>
480
-
481
- ## 🤝 贡献
482
-
483
- 我们欢迎您的贡献!让 YOLOv5 变得易于访问和有效是社区的共同努力。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing/)开始。通过 [YOLOv5 调查](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)分享您的反馈。感谢所有为使 YOLOv5 变得更好而做出贡献的人!
484
-
485
- [![Ultralytics 开源贡献者](https://raw.githubusercontent.com/ultralytics/assets/main/im/image-contributors.png)](https://github.com/ultralytics/yolov5/graphs/contributors)
486
-
487
- ## 📜 许可证
488
-
489
- Ultralytics 提供两种许可选项以满足不同需求:
490
-
491
- - **AGPL-3.0 许可证**:一种 [OSI 批准的](https://opensource.org/license/agpl-v3)开源许可证,非常适合学术研究、个人项目和测试。它促进开放协作和知识共享。详情请参阅 [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件。
492
- - **企业许可证**:专为商业应用量身定制,此许可证允许将 Ultralytics 软件和 AI 模型无缝集成到商业产品和服务中,绕过 AGPL-3.0 的开源要求。对于商业用例,请通过 [Ultralytics 授权许可](https://www.ultralytics.com/license)联系我们。
493
-
494
- ## 📧 联系
495
-
496
- 对于与 YOLOv5 相关的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。对于一般问题、讨论和社区支持,请加入我们的 [Discord 服务器](https://discord.com/invite/ultralytics)!
497
-
498
- <br>
499
- <div align="center">
500
- <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
501
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
502
- <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
503
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
504
- <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
505
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
506
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
507
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
508
- <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
509
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
510
- <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
511
- <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
512
- <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
513
- </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/benchmarks.py DELETED
@@ -1,294 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
- """
3
- Run YOLOv5 benchmarks on all supported export formats.
4
-
5
- Format | `export.py --include` | Model
6
- --- | --- | ---
7
- PyTorch | - | yolov5s.pt
8
- TorchScript | `torchscript` | yolov5s.torchscript
9
- ONNX | `onnx` | yolov5s.onnx
10
- OpenVINO | `openvino` | yolov5s_openvino_model/
11
- TensorRT | `engine` | yolov5s.engine
12
- CoreML | `coreml` | yolov5s.mlpackage
13
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
- TensorFlow GraphDef | `pb` | yolov5s.pb
15
- TensorFlow Lite | `tflite` | yolov5s.tflite
16
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
- TensorFlow.js | `tfjs` | yolov5s_web_model/
18
-
19
- Requirements:
20
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
- $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
23
-
24
- Usage:
25
- $ python benchmarks.py --weights yolov5s.pt --img 640
26
- """
27
-
28
- import argparse
29
- import platform
30
- import sys
31
- import time
32
- from pathlib import Path
33
-
34
- import pandas as pd
35
-
36
- FILE = Path(__file__).resolve()
37
- ROOT = FILE.parents[0] # YOLOv5 root directory
38
- if str(ROOT) not in sys.path:
39
- sys.path.append(str(ROOT)) # add ROOT to PATH
40
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
41
-
42
- import export
43
- from models.experimental import attempt_load
44
- from models.yolo import SegmentationModel
45
- from segment.val import run as val_seg
46
- from utils import notebook_init
47
- from utils.general import LOGGER, check_yaml, file_size, print_args
48
- from utils.torch_utils import select_device
49
- from val import run as val_det
50
-
51
-
52
- def run(
53
- weights=ROOT / "yolov5s.pt", # weights path
54
- imgsz=640, # inference size (pixels)
55
- batch_size=1, # batch size
56
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
57
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
58
- half=False, # use FP16 half-precision inference
59
- test=False, # test exports only
60
- pt_only=False, # test PyTorch only
61
- hard_fail=False, # throw error on benchmark failure
62
- ):
63
- """
64
- Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.
65
-
66
- Args:
67
- weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt").
68
- imgsz (int): Inference size in pixels (default: 640).
69
- batch_size (int): Batch size for inference (default: 1).
70
- data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml").
71
- device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: "").
72
- half (bool): Use FP16 half-precision inference (default: False).
73
- test (bool): Test export formats only (default: False).
74
- pt_only (bool): Test PyTorch format only (default: False).
75
- hard_fail (bool): Throw an error on benchmark failure if True (default: False).
76
-
77
- Returns:
78
- None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time.
79
-
80
- Notes:
81
- Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML,
82
- TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js
83
- are unsupported.
84
-
85
- Example:
86
- ```python
87
- $ python benchmarks.py --weights yolov5s.pt --img 640
88
- ```
89
-
90
- Usage:
91
- Install required packages:
92
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
93
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
94
- $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
95
-
96
- Run benchmarks:
97
- $ python benchmarks.py --weights yolov5s.pt --img 640
98
- """
99
- y, t = [], time.time()
100
- device = select_device(device)
101
- model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
102
- for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
103
- try:
104
- assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
105
- assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
106
- if "cpu" in device.type:
107
- assert cpu, "inference not supported on CPU"
108
- if "cuda" in device.type:
109
- assert gpu, "inference not supported on GPU"
110
-
111
- # Export
112
- if f == "-":
113
- w = weights # PyTorch format
114
- else:
115
- w = export.run(
116
- weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
117
- )[-1] # all others
118
- assert suffix in str(w), "export failed"
119
-
120
- # Validate
121
- if model_type == SegmentationModel:
122
- result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
123
- metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
124
- else: # DetectionModel:
125
- result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
126
- metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
127
- speed = result[2][1] # times (preprocess, inference, postprocess)
128
- y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
129
- except Exception as e:
130
- if hard_fail:
131
- assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
132
- LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
133
- y.append([name, None, None, None]) # mAP, t_inference
134
- if pt_only and i == 0:
135
- break # break after PyTorch
136
-
137
- # Print results
138
- LOGGER.info("\n")
139
- parse_opt()
140
- notebook_init() # print system info
141
- c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
142
- py = pd.DataFrame(y, columns=c)
143
- LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
144
- LOGGER.info(str(py if map else py.iloc[:, :2]))
145
- if hard_fail and isinstance(hard_fail, str):
146
- metrics = py["mAP50-95"].array # values to compare to floor
147
- floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
148
- assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
149
- return py
150
-
151
-
152
- def test(
153
- weights=ROOT / "yolov5s.pt", # weights path
154
- imgsz=640, # inference size (pixels)
155
- batch_size=1, # batch size
156
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
157
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
158
- half=False, # use FP16 half-precision inference
159
- test=False, # test exports only
160
- pt_only=False, # test PyTorch only
161
- hard_fail=False, # throw error on benchmark failure
162
- ):
163
- """
164
- Run YOLOv5 export tests for all supported formats and log the results, including export statuses.
165
-
166
- Args:
167
- weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'.
168
- imgsz (int): Inference image size (in pixels). Default is 640.
169
- batch_size (int): Batch size for testing. Default is 1.
170
- data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'.
171
- device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string.
172
- half (bool): Use FP16 half-precision for inference if True. Default is False.
173
- test (bool): Test export formats only without running inference. Default is False.
174
- pt_only (bool): Test only the PyTorch model if True. Default is False.
175
- hard_fail (bool): Raise error on export or test failure if True. Default is False.
176
-
177
- Returns:
178
- pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses.
179
-
180
- Examples:
181
- ```python
182
- $ python benchmarks.py --weights yolov5s.pt --img 640
183
- ```
184
-
185
- Notes:
186
- Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow
187
- SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported.
188
-
189
- Usage:
190
- Install required packages:
191
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
192
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
193
- $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
194
- Run export tests:
195
- $ python benchmarks.py --weights yolov5s.pt --img 640
196
- """
197
- y, t = [], time.time()
198
- device = select_device(device)
199
- for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
200
- try:
201
- w = (
202
- weights
203
- if f == "-"
204
- else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
205
- ) # weights
206
- assert suffix in str(w), "export failed"
207
- y.append([name, True])
208
- except Exception:
209
- y.append([name, False]) # mAP, t_inference
210
-
211
- # Print results
212
- LOGGER.info("\n")
213
- parse_opt()
214
- notebook_init() # print system info
215
- py = pd.DataFrame(y, columns=["Format", "Export"])
216
- LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
217
- LOGGER.info(str(py))
218
- return py
219
-
220
-
221
- def parse_opt():
222
- """
223
- Parses command-line arguments for YOLOv5 model inference configuration.
224
-
225
- Args:
226
- weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'.
227
- imgsz (int): Inference size in pixels. Defaults to 640.
228
- batch_size (int): Batch size. Defaults to 1.
229
- data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'.
230
- device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select).
231
- half (bool): Use FP16 half-precision inference. This is a flag and defaults to False.
232
- test (bool): Test exports only. This is a flag and defaults to False.
233
- pt_only (bool): Test PyTorch only. This is a flag and defaults to False.
234
- hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum
235
- metric floor, e.g., '0.29'. Defaults to False.
236
-
237
- Returns:
238
- argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object.
239
-
240
- Notes:
241
- The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'.
242
- The parsed arguments are printed for reference using 'print_args()'.
243
- """
244
- parser = argparse.ArgumentParser()
245
- parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
246
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
247
- parser.add_argument("--batch-size", type=int, default=1, help="batch size")
248
- parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
249
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
250
- parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
251
- parser.add_argument("--test", action="store_true", help="test exports only")
252
- parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
253
- parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
254
- opt = parser.parse_args()
255
- opt.data = check_yaml(opt.data) # check YAML
256
- print_args(vars(opt))
257
- return opt
258
-
259
-
260
- def main(opt):
261
- """
262
- Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments.
263
-
264
- Args:
265
- opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data
266
- configuration, device, and other flags for inference settings.
267
-
268
- Returns:
269
- None: This function does not return any value. It leverages side-effects such as logging and running benchmarks.
270
-
271
- Example:
272
- ```python
273
- if __name__ == "__main__":
274
- opt = parse_opt()
275
- main(opt)
276
- ```
277
-
278
- Notes:
279
- - For a complete list of supported export formats and their respective requirements, refer to the
280
- [Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats).
281
- - Ensure that you have installed all necessary dependencies by following the installation instructions detailed in
282
- the [main repository](https://github.com/ultralytics/yolov5#installation).
283
-
284
- ```shell
285
- # Running benchmarks on default weights and image size
286
- $ python benchmarks.py --weights yolov5s.pt --img 640
287
- ```
288
- """
289
- test(**vars(opt)) if opt.test else run(**vars(opt))
290
-
291
-
292
- if __name__ == "__main__":
293
- opt = parse_opt()
294
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/classify/predict.py DELETED
@@ -1,241 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
- """
3
- Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
-
5
- Usage - sources:
6
- $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
7
- img.jpg # image
8
- vid.mp4 # video
9
- screen # screenshot
10
- path/ # directory
11
- list.txt # list of images
12
- list.streams # list of streams
13
- 'path/*.jpg' # glob
14
- 'https://youtu.be/LNwODJXcvt4' # YouTube
15
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
-
17
- Usage - formats:
18
- $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
19
- yolov5s-cls.torchscript # TorchScript
20
- yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
- yolov5s-cls_openvino_model # OpenVINO
22
- yolov5s-cls.engine # TensorRT
23
- yolov5s-cls.mlmodel # CoreML (macOS-only)
24
- yolov5s-cls_saved_model # TensorFlow SavedModel
25
- yolov5s-cls.pb # TensorFlow GraphDef
26
- yolov5s-cls.tflite # TensorFlow Lite
27
- yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
28
- yolov5s-cls_paddle_model # PaddlePaddle
29
- """
30
-
31
- import argparse
32
- import os
33
- import platform
34
- import sys
35
- from pathlib import Path
36
-
37
- import torch
38
- import torch.nn.functional as F
39
-
40
- FILE = Path(__file__).resolve()
41
- ROOT = FILE.parents[1] # YOLOv5 root directory
42
- if str(ROOT) not in sys.path:
43
- sys.path.append(str(ROOT)) # add ROOT to PATH
44
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
45
-
46
- from ultralytics.utils.plotting import Annotator
47
-
48
- from models.common import DetectMultiBackend
49
- from utils.augmentations import classify_transforms
50
- from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
51
- from utils.general import (
52
- LOGGER,
53
- Profile,
54
- check_file,
55
- check_img_size,
56
- check_imshow,
57
- check_requirements,
58
- colorstr,
59
- cv2,
60
- increment_path,
61
- print_args,
62
- strip_optimizer,
63
- )
64
- from utils.torch_utils import select_device, smart_inference_mode
65
-
66
-
67
- @smart_inference_mode()
68
- def run(
69
- weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
70
- source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
71
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
72
- imgsz=(224, 224), # inference size (height, width)
73
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
74
- view_img=False, # show results
75
- save_txt=False, # save results to *.txt
76
- nosave=False, # do not save images/videos
77
- augment=False, # augmented inference
78
- visualize=False, # visualize features
79
- update=False, # update all models
80
- project=ROOT / "runs/predict-cls", # save results to project/name
81
- name="exp", # save results to project/name
82
- exist_ok=False, # existing project/name ok, do not increment
83
- half=False, # use FP16 half-precision inference
84
- dnn=False, # use OpenCV DNN for ONNX inference
85
- vid_stride=1, # video frame-rate stride
86
- ):
87
- """Conducts YOLOv5 classification inference on diverse input sources and saves results."""
88
- source = str(source)
89
- save_img = not nosave and not source.endswith(".txt") # save inference images
90
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
91
- is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
92
- webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
93
- screenshot = source.lower().startswith("screen")
94
- if is_url and is_file:
95
- source = check_file(source) # download
96
-
97
- # Directories
98
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
99
- (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
100
-
101
- # Load model
102
- device = select_device(device)
103
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
104
- stride, names, pt = model.stride, model.names, model.pt
105
- imgsz = check_img_size(imgsz, s=stride) # check image size
106
-
107
- # Dataloader
108
- bs = 1 # batch_size
109
- if webcam:
110
- view_img = check_imshow(warn=True)
111
- dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
112
- bs = len(dataset)
113
- elif screenshot:
114
- dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
115
- else:
116
- dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
117
- vid_path, vid_writer = [None] * bs, [None] * bs
118
-
119
- # Run inference
120
- model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
121
- seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
122
- for path, im, im0s, vid_cap, s in dataset:
123
- with dt[0]:
124
- im = torch.Tensor(im).to(model.device)
125
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
126
- if len(im.shape) == 3:
127
- im = im[None] # expand for batch dim
128
-
129
- # Inference
130
- with dt[1]:
131
- results = model(im)
132
-
133
- # Post-process
134
- with dt[2]:
135
- pred = F.softmax(results, dim=1) # probabilities
136
-
137
- # Process predictions
138
- for i, prob in enumerate(pred): # per image
139
- seen += 1
140
- if webcam: # batch_size >= 1
141
- p, im0, frame = path[i], im0s[i].copy(), dataset.count
142
- s += f"{i}: "
143
- else:
144
- p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
145
-
146
- p = Path(p) # to Path
147
- save_path = str(save_dir / p.name) # im.jpg
148
- txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
149
-
150
- s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
151
- annotator = Annotator(im0, example=str(names), pil=True)
152
-
153
- # Print results
154
- top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
155
- s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
156
-
157
- # Write results
158
- text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
159
- if save_img or view_img: # Add bbox to image
160
- annotator.text([32, 32], text, txt_color=(255, 255, 255))
161
- if save_txt: # Write to file
162
- with open(f"{txt_path}.txt", "a") as f:
163
- f.write(text + "\n")
164
-
165
- # Stream results
166
- im0 = annotator.result()
167
- if view_img:
168
- if platform.system() == "Linux" and p not in windows:
169
- windows.append(p)
170
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
171
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
172
- cv2.imshow(str(p), im0)
173
- cv2.waitKey(1) # 1 millisecond
174
-
175
- # Save results (image with detections)
176
- if save_img:
177
- if dataset.mode == "image":
178
- cv2.imwrite(save_path, im0)
179
- else: # 'video' or 'stream'
180
- if vid_path[i] != save_path: # new video
181
- vid_path[i] = save_path
182
- if isinstance(vid_writer[i], cv2.VideoWriter):
183
- vid_writer[i].release() # release previous video writer
184
- if vid_cap: # video
185
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
186
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
187
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
188
- else: # stream
189
- fps, w, h = 30, im0.shape[1], im0.shape[0]
190
- save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
191
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
192
- vid_writer[i].write(im0)
193
-
194
- # Print time (inference-only)
195
- LOGGER.info(f"{s}{dt[1].dt * 1e3:.1f}ms")
196
-
197
- # Print results
198
- t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
199
- LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
200
- if save_txt or save_img:
201
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
202
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
203
- if update:
204
- strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
205
-
206
-
207
- def parse_opt():
208
- """Parses command line arguments for YOLOv5 inference settings including model, source, device, and image size."""
209
- parser = argparse.ArgumentParser()
210
- parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)")
211
- parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
212
- parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
213
- parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w")
214
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
215
- parser.add_argument("--view-img", action="store_true", help="show results")
216
- parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
217
- parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
218
- parser.add_argument("--augment", action="store_true", help="augmented inference")
219
- parser.add_argument("--visualize", action="store_true", help="visualize features")
220
- parser.add_argument("--update", action="store_true", help="update all models")
221
- parser.add_argument("--project", default=ROOT / "runs/predict-cls", help="save results to project/name")
222
- parser.add_argument("--name", default="exp", help="save results to project/name")
223
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
224
- parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
225
- parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
226
- parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
227
- opt = parser.parse_args()
228
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
229
- print_args(vars(opt))
230
- return opt
231
-
232
-
233
- def main(opt):
234
- """Executes YOLOv5 model inference with options for ONNX DNN and video frame-rate stride adjustments."""
235
- check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
236
- run(**vars(opt))
237
-
238
-
239
- if __name__ == "__main__":
240
- opt = parse_opt()
241
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/classify/train.py DELETED
@@ -1,382 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
- """
3
- Train a YOLOv5 classifier model on a classification dataset.
4
-
5
- Usage - Single-GPU training:
6
- $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
7
-
8
- Usage - Multi-GPU DDP training:
9
- $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
10
-
11
- Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
12
- YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
13
- Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
14
- """
15
-
16
- import argparse
17
- import os
18
- import subprocess
19
- import sys
20
- import time
21
- from copy import deepcopy
22
- from datetime import datetime
23
- from pathlib import Path
24
-
25
- import torch
26
- import torch.distributed as dist
27
- import torch.hub as hub
28
- import torch.optim.lr_scheduler as lr_scheduler
29
- import torchvision
30
- from torch.cuda import amp
31
- from tqdm import tqdm
32
-
33
- FILE = Path(__file__).resolve()
34
- ROOT = FILE.parents[1] # YOLOv5 root directory
35
- if str(ROOT) not in sys.path:
36
- sys.path.append(str(ROOT)) # add ROOT to PATH
37
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
-
39
- from classify import val as validate
40
- from models.experimental import attempt_load
41
- from models.yolo import ClassificationModel, DetectionModel
42
- from utils.dataloaders import create_classification_dataloader
43
- from utils.general import (
44
- DATASETS_DIR,
45
- LOGGER,
46
- TQDM_BAR_FORMAT,
47
- WorkingDirectory,
48
- check_git_info,
49
- check_git_status,
50
- check_requirements,
51
- colorstr,
52
- download,
53
- increment_path,
54
- init_seeds,
55
- print_args,
56
- yaml_save,
57
- )
58
- from utils.loggers import GenericLogger
59
- from utils.plots import imshow_cls
60
- from utils.torch_utils import (
61
- ModelEMA,
62
- de_parallel,
63
- model_info,
64
- reshape_classifier_output,
65
- select_device,
66
- smart_DDP,
67
- smart_optimizer,
68
- smartCrossEntropyLoss,
69
- torch_distributed_zero_first,
70
- )
71
-
72
- LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
73
- RANK = int(os.getenv("RANK", -1))
74
- WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
75
- GIT_INFO = check_git_info()
76
-
77
-
78
- def train(opt, device):
79
- """Trains a YOLOv5 model, managing datasets, model optimization, logging, and saving checkpoints."""
80
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
81
- save_dir, data, bs, epochs, nw, imgsz, pretrained = (
82
- opt.save_dir,
83
- Path(opt.data),
84
- opt.batch_size,
85
- opt.epochs,
86
- min(os.cpu_count() - 1, opt.workers),
87
- opt.imgsz,
88
- str(opt.pretrained).lower() == "true",
89
- )
90
- cuda = device.type != "cpu"
91
-
92
- # Directories
93
- wdir = save_dir / "weights"
94
- wdir.mkdir(parents=True, exist_ok=True) # make dir
95
- last, best = wdir / "last.pt", wdir / "best.pt"
96
-
97
- # Save run settings
98
- yaml_save(save_dir / "opt.yaml", vars(opt))
99
-
100
- # Logger
101
- logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
102
-
103
- # Download Dataset
104
- with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
105
- data_dir = data if data.is_dir() else (DATASETS_DIR / data)
106
- if not data_dir.is_dir():
107
- LOGGER.info(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
108
- t = time.time()
109
- if str(data) == "imagenet":
110
- subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
111
- else:
112
- url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{data}.zip"
113
- download(url, dir=data_dir.parent)
114
- s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
115
- LOGGER.info(s)
116
-
117
- # Dataloaders
118
- nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes
119
- trainloader = create_classification_dataloader(
120
- path=data_dir / "train",
121
- imgsz=imgsz,
122
- batch_size=bs // WORLD_SIZE,
123
- augment=True,
124
- cache=opt.cache,
125
- rank=LOCAL_RANK,
126
- workers=nw,
127
- )
128
-
129
- test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val" # data/test or data/val
130
- if RANK in {-1, 0}:
131
- testloader = create_classification_dataloader(
132
- path=test_dir,
133
- imgsz=imgsz,
134
- batch_size=bs // WORLD_SIZE * 2,
135
- augment=False,
136
- cache=opt.cache,
137
- rank=-1,
138
- workers=nw,
139
- )
140
-
141
- # Model
142
- with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
143
- if Path(opt.model).is_file() or opt.model.endswith(".pt"):
144
- model = attempt_load(opt.model, device="cpu", fuse=False)
145
- elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
146
- model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
147
- else:
148
- m = hub.list("ultralytics/yolov5") # + hub.list('pytorch/vision') # models
149
- raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
150
- if isinstance(model, DetectionModel):
151
- LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
152
- model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
153
- reshape_classifier_output(model, nc) # update class count
154
- for m in model.modules():
155
- if not pretrained and hasattr(m, "reset_parameters"):
156
- m.reset_parameters()
157
- if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
158
- m.p = opt.dropout # set dropout
159
- for p in model.parameters():
160
- p.requires_grad = True # for training
161
- model = model.to(device)
162
-
163
- # Info
164
- if RANK in {-1, 0}:
165
- model.names = trainloader.dataset.classes # attach class names
166
- model.transforms = testloader.dataset.torch_transforms # attach inference transforms
167
- model_info(model)
168
- if opt.verbose:
169
- LOGGER.info(model)
170
- images, labels = next(iter(trainloader))
171
- file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
172
- logger.log_images(file, name="Train Examples")
173
- logger.log_graph(model, imgsz) # log model
174
-
175
- # Optimizer
176
- optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
177
-
178
- # Scheduler
179
- lrf = 0.01 # final lr (fraction of lr0)
180
-
181
- # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
182
- def lf(x):
183
- """Linear learning rate scheduler function, scaling learning rate from initial value to `lrf` over `epochs`."""
184
- return (1 - x / epochs) * (1 - lrf) + lrf # linear
185
-
186
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
187
- # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
188
- # final_div_factor=1 / 25 / lrf)
189
-
190
- # EMA
191
- ema = ModelEMA(model) if RANK in {-1, 0} else None
192
-
193
- # DDP mode
194
- if cuda and RANK != -1:
195
- model = smart_DDP(model)
196
-
197
- # Train
198
- t0 = time.time()
199
- criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
200
- best_fitness = 0.0
201
- scaler = amp.GradScaler(enabled=cuda)
202
- val = test_dir.stem # 'val' or 'test'
203
- LOGGER.info(
204
- f"Image sizes {imgsz} train, {imgsz} test\n"
205
- f"Using {nw * WORLD_SIZE} dataloader workers\n"
206
- f"Logging results to {colorstr('bold', save_dir)}\n"
207
- f"Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n"
208
- f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
209
- )
210
- for epoch in range(epochs): # loop over the dataset multiple times
211
- tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
212
- model.train()
213
- if RANK != -1:
214
- trainloader.sampler.set_epoch(epoch)
215
- pbar = enumerate(trainloader)
216
- if RANK in {-1, 0}:
217
- pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
218
- for i, (images, labels) in pbar: # progress bar
219
- images, labels = images.to(device, non_blocking=True), labels.to(device)
220
-
221
- # Forward
222
- with amp.autocast(enabled=cuda): # stability issues when enabled
223
- loss = criterion(model(images), labels)
224
-
225
- # Backward
226
- scaler.scale(loss).backward()
227
-
228
- # Optimize
229
- scaler.unscale_(optimizer) # unscale gradients
230
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
231
- scaler.step(optimizer)
232
- scaler.update()
233
- optimizer.zero_grad()
234
- if ema:
235
- ema.update(model)
236
-
237
- if RANK in {-1, 0}:
238
- # Print
239
- tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
240
- mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0) # (GB)
241
- pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
242
-
243
- # Test
244
- if i == len(pbar) - 1: # last batch
245
- top1, top5, vloss = validate.run(
246
- model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
247
- ) # test accuracy, loss
248
- fitness = top1 # define fitness as top1 accuracy
249
-
250
- # Scheduler
251
- scheduler.step()
252
-
253
- # Log metrics
254
- if RANK in {-1, 0}:
255
- # Best fitness
256
- if fitness > best_fitness:
257
- best_fitness = fitness
258
-
259
- # Log
260
- metrics = {
261
- "train/loss": tloss,
262
- f"{val}/loss": vloss,
263
- "metrics/accuracy_top1": top1,
264
- "metrics/accuracy_top5": top5,
265
- "lr/0": optimizer.param_groups[0]["lr"],
266
- } # learning rate
267
- logger.log_metrics(metrics, epoch)
268
-
269
- # Save model
270
- final_epoch = epoch + 1 == epochs
271
- if (not opt.nosave) or final_epoch:
272
- ckpt = {
273
- "epoch": epoch,
274
- "best_fitness": best_fitness,
275
- "model": deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
276
- "ema": None, # deepcopy(ema.ema).half(),
277
- "updates": ema.updates,
278
- "optimizer": None, # optimizer.state_dict(),
279
- "opt": vars(opt),
280
- "git": GIT_INFO, # {remote, branch, commit} if a git repo
281
- "date": datetime.now().isoformat(),
282
- }
283
-
284
- # Save last, best and delete
285
- torch.save(ckpt, last)
286
- if best_fitness == fitness:
287
- torch.save(ckpt, best)
288
- del ckpt
289
-
290
- # Train complete
291
- if RANK in {-1, 0} and final_epoch:
292
- LOGGER.info(
293
- f"\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)"
294
- f"\nResults saved to {colorstr('bold', save_dir)}"
295
- f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
296
- f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
297
- f"\nExport: python export.py --weights {best} --include onnx"
298
- f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
299
- f"\nVisualize: https://netron.app\n"
300
- )
301
-
302
- # Plot examples
303
- images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
304
- pred = torch.max(ema.ema(images.to(device)), 1)[1]
305
- file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
306
-
307
- # Log results
308
- meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
309
- logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
310
- logger.log_model(best, epochs, metadata=meta)
311
-
312
-
313
- def parse_opt(known=False):
314
- """Parses command line arguments for YOLOv5 training including model path, dataset, epochs, and more, returning
315
- parsed arguments.
316
- """
317
- parser = argparse.ArgumentParser()
318
- parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
319
- parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
320
- parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
321
- parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
322
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
323
- parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
324
- parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
325
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
326
- parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
327
- parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
328
- parser.add_argument("--name", default="exp", help="save to project/name")
329
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
330
- parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
331
- parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
332
- parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
333
- parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
334
- parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
335
- parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
336
- parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
337
- parser.add_argument("--verbose", action="store_true", help="Verbose mode")
338
- parser.add_argument("--seed", type=int, default=0, help="Global training seed")
339
- parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
340
- return parser.parse_known_args()[0] if known else parser.parse_args()
341
-
342
-
343
- def main(opt):
344
- """Executes YOLOv5 training with given options, handling device setup and DDP mode; includes pre-training checks."""
345
- if RANK in {-1, 0}:
346
- print_args(vars(opt))
347
- check_git_status()
348
- check_requirements(ROOT / "requirements.txt")
349
-
350
- # DDP mode
351
- device = select_device(opt.device, batch_size=opt.batch_size)
352
- if LOCAL_RANK != -1:
353
- assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
354
- assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
355
- assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
356
- torch.cuda.set_device(LOCAL_RANK)
357
- device = torch.device("cuda", LOCAL_RANK)
358
- dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
359
-
360
- # Parameters
361
- opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
362
-
363
- # Train
364
- train(opt, device)
365
-
366
-
367
- def run(**kwargs):
368
- """
369
- Executes YOLOv5 model training or inference with specified parameters, returning updated options.
370
-
371
- Example: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
372
- """
373
- opt = parse_opt(True)
374
- for k, v in kwargs.items():
375
- setattr(opt, k, v)
376
- main(opt)
377
- return opt
378
-
379
-
380
- if __name__ == "__main__":
381
- opt = parse_opt()
382
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/classify/tutorial.ipynb DELETED
@@ -1,1488 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "t6MPjfT5NrKQ"
7
- },
8
- "source": [
9
- "<div align=\"center\">\n",
10
- "\n",
11
- " <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
12
- " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
13
- "\n",
14
- "\n",
15
- "<br>\n",
16
- " <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
17
- " <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
18
- " <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
19
- "<br>\n",
20
- "\n",
21
- "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
22
- "\n",
23
- "</div>"
24
- ]
25
- },
26
- {
27
- "cell_type": "markdown",
28
- "metadata": {
29
- "id": "7mGmQbAO5pQb"
30
- },
31
- "source": [
32
- "# Setup\n",
33
- "\n",
34
- "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": null,
40
- "metadata": {
41
- "colab": {
42
- "base_uri": "https://localhost:8080/"
43
- },
44
- "id": "wbvMlHd_QwMG",
45
- "outputId": "0806e375-610d-4ec0-c867-763dbb518279"
46
- },
47
- "outputs": [
48
- {
49
- "name": "stderr",
50
- "output_type": "stream",
51
- "text": [
52
- "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
53
- ]
54
- },
55
- {
56
- "name": "stdout",
57
- "output_type": "stream",
58
- "text": [
59
- "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
60
- ]
61
- }
62
- ],
63
- "source": [
64
- "!git clone https://github.com/ultralytics/yolov5 # clone\n",
65
- "%cd yolov5\n",
66
- "%pip install -qr requirements.txt # install\n",
67
- "\n",
68
- "import torch\n",
69
- "\n",
70
- "import utils\n",
71
- "\n",
72
- "display = utils.notebook_init() # checks"
73
- ]
74
- },
75
- {
76
- "cell_type": "markdown",
77
- "metadata": {
78
- "id": "4JnkELT0cIJg"
79
- },
80
- "source": [
81
- "# 1. Predict\n",
82
- "\n",
83
- "`classify/predict.py` runs YOLOv5 Classification inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict-cls`. Example inference sources are:\n",
84
- "\n",
85
- "```shell\n",
86
- "python classify/predict.py --source 0 # webcam\n",
87
- " img.jpg # image \n",
88
- " vid.mp4 # video\n",
89
- " screen # screenshot\n",
90
- " path/ # directory\n",
91
- " 'path/*.jpg' # glob\n",
92
- " 'https://youtu.be/LNwODJXcvt4' # YouTube\n",
93
- " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
94
- "```"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": null,
100
- "metadata": {
101
- "colab": {
102
- "base_uri": "https://localhost:8080/"
103
- },
104
- "id": "zR9ZbuQCH7FX",
105
- "outputId": "50504ef7-aa3e-4281-a4e3-d0c7df3c0ffe"
106
- },
107
- "outputs": [
108
- {
109
- "name": "stdout",
110
- "output_type": "stream",
111
- "text": [
112
- "\u001b[34m\u001b[1mclassify/predict: \u001b[0mweights=['yolov5s-cls.pt'], source=data/images, data=data/coco128.yaml, imgsz=[224, 224], device=, view_img=False, save_txt=False, nosave=False, augment=False, visualize=False, update=False, project=runs/predict-cls, name=exp, exist_ok=False, half=False, dnn=False, vid_stride=1\n",
113
- "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
114
- "\n",
115
- "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt to yolov5s-cls.pt...\n",
116
- "100% 10.5M/10.5M [00:00<00:00, 12.3MB/s]\n",
117
- "\n",
118
- "Fusing layers... \n",
119
- "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
120
- "image 1/2 /content/yolov5/data/images/bus.jpg: 224x224 minibus 0.39, police van 0.24, amphibious vehicle 0.05, recreational vehicle 0.04, trolleybus 0.03, 3.9ms\n",
121
- "image 2/2 /content/yolov5/data/images/zidane.jpg: 224x224 suit 0.38, bow tie 0.19, bridegroom 0.18, rugby ball 0.04, stage 0.02, 4.6ms\n",
122
- "Speed: 0.3ms pre-process, 4.3ms inference, 1.5ms NMS per image at shape (1, 3, 224, 224)\n",
123
- "Results saved to \u001b[1mruns/predict-cls/exp\u001b[0m\n"
124
- ]
125
- }
126
- ],
127
- "source": [
128
- "!python classify/predict.py --weights yolov5s-cls.pt --img 224 --source data/images\n",
129
- "# display.Image(filename='runs/predict-cls/exp/zidane.jpg', width=600)"
130
- ]
131
- },
132
- {
133
- "cell_type": "markdown",
134
- "metadata": {
135
- "id": "hkAzDWJ7cWTr"
136
- },
137
- "source": [
138
- "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
139
- "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/202808393-50deb439-ae1b-4246-a685-7560c9b37211.jpg\" width=\"600\">"
140
- ]
141
- },
142
- {
143
- "cell_type": "markdown",
144
- "metadata": {
145
- "id": "0eq1SMWl6Sfn"
146
- },
147
- "source": [
148
- "# 2. Validate\n",
149
- "Validate a model's accuracy on the [Imagenet](https://image-net.org/) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
150
- ]
151
- },
152
- {
153
- "cell_type": "code",
154
- "execution_count": null,
155
- "metadata": {
156
- "colab": {
157
- "base_uri": "https://localhost:8080/"
158
- },
159
- "id": "WQPtK1QYVaD_",
160
- "outputId": "20fc0630-141e-4a90-ea06-342cbd7ce496"
161
- },
162
- "outputs": [
163
- {
164
- "name": "stdout",
165
- "output_type": "stream",
166
- "text": [
167
- "--2022-11-22 19:53:40-- https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar\n",
168
- "Resolving image-net.org (image-net.org)... 171.64.68.16\n",
169
- "Connecting to image-net.org (image-net.org)|171.64.68.16|:443... connected.\n",
170
- "HTTP request sent, awaiting response... 200 OK\n",
171
- "Length: 6744924160 (6.3G) [application/x-tar]\n",
172
- "Saving to: ‘ILSVRC2012_img_val.tar’\n",
173
- "\n",
174
- "ILSVRC2012_img_val. 100%[===================>] 6.28G 16.1MB/s in 10m 52s \n",
175
- "\n",
176
- "2022-11-22 20:04:32 (9.87 MB/s) - ‘ILSVRC2012_img_val.tar’ saved [6744924160/6744924160]\n",
177
- "\n"
178
- ]
179
- }
180
- ],
181
- "source": [
182
- "# Download Imagenet val (6.3G, 50000 images)\n",
183
- "!bash data/scripts/get_imagenet.sh --val"
184
- ]
185
- },
186
- {
187
- "cell_type": "code",
188
- "execution_count": null,
189
- "metadata": {
190
- "colab": {
191
- "base_uri": "https://localhost:8080/"
192
- },
193
- "id": "X58w8JLpMnjH",
194
- "outputId": "41843132-98e2-4c25-d474-4cd7b246fb8e"
195
- },
196
- "outputs": [
197
- {
198
- "name": "stdout",
199
- "output_type": "stream",
200
- "text": [
201
- "\u001b[34m\u001b[1mclassify/val: \u001b[0mdata=../datasets/imagenet, weights=['yolov5s-cls.pt'], batch_size=128, imgsz=224, device=, workers=8, verbose=True, project=runs/val-cls, name=exp, exist_ok=False, half=True, dnn=False\n",
202
- "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
203
- "\n",
204
- "Fusing layers... \n",
205
- "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
206
- "validating: 100% 391/391 [04:57<00:00, 1.31it/s]\n",
207
- " Class Images top1_acc top5_acc\n",
208
- " all 50000 0.715 0.902\n",
209
- " tench 50 0.94 0.98\n",
210
- " goldfish 50 0.88 0.92\n",
211
- " great white shark 50 0.78 0.96\n",
212
- " tiger shark 50 0.68 0.96\n",
213
- " hammerhead shark 50 0.82 0.92\n",
214
- " electric ray 50 0.76 0.9\n",
215
- " stingray 50 0.7 0.9\n",
216
- " cock 50 0.78 0.92\n",
217
- " hen 50 0.84 0.96\n",
218
- " ostrich 50 0.98 1\n",
219
- " brambling 50 0.9 0.96\n",
220
- " goldfinch 50 0.92 0.98\n",
221
- " house finch 50 0.88 0.96\n",
222
- " junco 50 0.94 0.98\n",
223
- " indigo bunting 50 0.86 0.88\n",
224
- " American robin 50 0.9 0.96\n",
225
- " bulbul 50 0.84 0.96\n",
226
- " jay 50 0.9 0.96\n",
227
- " magpie 50 0.84 0.96\n",
228
- " chickadee 50 0.9 1\n",
229
- " American dipper 50 0.82 0.92\n",
230
- " kite 50 0.76 0.94\n",
231
- " bald eagle 50 0.92 1\n",
232
- " vulture 50 0.96 1\n",
233
- " great grey owl 50 0.94 0.98\n",
234
- " fire salamander 50 0.96 0.98\n",
235
- " smooth newt 50 0.58 0.94\n",
236
- " newt 50 0.74 0.9\n",
237
- " spotted salamander 50 0.86 0.94\n",
238
- " axolotl 50 0.86 0.96\n",
239
- " American bullfrog 50 0.78 0.92\n",
240
- " tree frog 50 0.84 0.96\n",
241
- " tailed frog 50 0.48 0.8\n",
242
- " loggerhead sea turtle 50 0.68 0.94\n",
243
- " leatherback sea turtle 50 0.5 0.8\n",
244
- " mud turtle 50 0.64 0.84\n",
245
- " terrapin 50 0.52 0.98\n",
246
- " box turtle 50 0.84 0.98\n",
247
- " banded gecko 50 0.7 0.88\n",
248
- " green iguana 50 0.76 0.94\n",
249
- " Carolina anole 50 0.58 0.96\n",
250
- "desert grassland whiptail lizard 50 0.82 0.94\n",
251
- " agama 50 0.74 0.92\n",
252
- " frilled-necked lizard 50 0.84 0.86\n",
253
- " alligator lizard 50 0.58 0.78\n",
254
- " Gila monster 50 0.72 0.8\n",
255
- " European green lizard 50 0.42 0.9\n",
256
- " chameleon 50 0.76 0.84\n",
257
- " Komodo dragon 50 0.86 0.96\n",
258
- " Nile crocodile 50 0.7 0.84\n",
259
- " American alligator 50 0.76 0.96\n",
260
- " triceratops 50 0.9 0.94\n",
261
- " worm snake 50 0.76 0.88\n",
262
- " ring-necked snake 50 0.8 0.92\n",
263
- " eastern hog-nosed snake 50 0.58 0.88\n",
264
- " smooth green snake 50 0.6 0.94\n",
265
- " kingsnake 50 0.82 0.9\n",
266
- " garter snake 50 0.88 0.94\n",
267
- " water snake 50 0.7 0.94\n",
268
- " vine snake 50 0.66 0.76\n",
269
- " night snake 50 0.34 0.82\n",
270
- " boa constrictor 50 0.8 0.96\n",
271
- " African rock python 50 0.48 0.76\n",
272
- " Indian cobra 50 0.82 0.94\n",
273
- " green mamba 50 0.54 0.86\n",
274
- " sea snake 50 0.62 0.9\n",
275
- " Saharan horned viper 50 0.56 0.86\n",
276
- "eastern diamondback rattlesnake 50 0.6 0.86\n",
277
- " sidewinder 50 0.28 0.86\n",
278
- " trilobite 50 0.98 0.98\n",
279
- " harvestman 50 0.86 0.94\n",
280
- " scorpion 50 0.86 0.94\n",
281
- " yellow garden spider 50 0.92 0.96\n",
282
- " barn spider 50 0.38 0.98\n",
283
- " European garden spider 50 0.62 0.98\n",
284
- " southern black widow 50 0.88 0.94\n",
285
- " tarantula 50 0.94 1\n",
286
- " wolf spider 50 0.82 0.92\n",
287
- " tick 50 0.74 0.84\n",
288
- " centipede 50 0.68 0.82\n",
289
- " black grouse 50 0.88 0.98\n",
290
- " ptarmigan 50 0.78 0.94\n",
291
- " ruffed grouse 50 0.88 1\n",
292
- " prairie grouse 50 0.92 1\n",
293
- " peacock 50 0.88 0.9\n",
294
- " quail 50 0.9 0.94\n",
295
- " partridge 50 0.74 0.96\n",
296
- " grey parrot 50 0.9 0.96\n",
297
- " macaw 50 0.88 0.98\n",
298
- "sulphur-crested cockatoo 50 0.86 0.92\n",
299
- " lorikeet 50 0.96 1\n",
300
- " coucal 50 0.82 0.88\n",
301
- " bee eater 50 0.96 0.98\n",
302
- " hornbill 50 0.9 0.96\n",
303
- " hummingbird 50 0.88 0.96\n",
304
- " jacamar 50 0.92 0.94\n",
305
- " toucan 50 0.84 0.94\n",
306
- " duck 50 0.76 0.94\n",
307
- " red-breasted merganser 50 0.86 0.96\n",
308
- " goose 50 0.74 0.96\n",
309
- " black swan 50 0.94 0.98\n",
310
- " tusker 50 0.54 0.92\n",
311
- " echidna 50 0.98 1\n",
312
- " platypus 50 0.72 0.84\n",
313
- " wallaby 50 0.78 0.88\n",
314
- " koala 50 0.84 0.92\n",
315
- " wombat 50 0.78 0.84\n",
316
- " jellyfish 50 0.88 0.96\n",
317
- " sea anemone 50 0.72 0.9\n",
318
- " brain coral 50 0.88 0.96\n",
319
- " flatworm 50 0.8 0.98\n",
320
- " nematode 50 0.86 0.9\n",
321
- " conch 50 0.74 0.88\n",
322
- " snail 50 0.78 0.88\n",
323
- " slug 50 0.74 0.82\n",
324
- " sea slug 50 0.88 0.98\n",
325
- " chiton 50 0.88 0.98\n",
326
- " chambered nautilus 50 0.88 0.92\n",
327
- " Dungeness crab 50 0.78 0.94\n",
328
- " rock crab 50 0.68 0.86\n",
329
- " fiddler crab 50 0.64 0.86\n",
330
- " red king crab 50 0.76 0.96\n",
331
- " American lobster 50 0.78 0.96\n",
332
- " spiny lobster 50 0.74 0.88\n",
333
- " crayfish 50 0.56 0.86\n",
334
- " hermit crab 50 0.78 0.96\n",
335
- " isopod 50 0.66 0.78\n",
336
- " white stork 50 0.88 0.96\n",
337
- " black stork 50 0.84 0.98\n",
338
- " spoonbill 50 0.96 1\n",
339
- " flamingo 50 0.94 1\n",
340
- " little blue heron 50 0.92 0.98\n",
341
- " great egret 50 0.9 0.96\n",
342
- " bittern 50 0.86 0.94\n",
343
- " crane (bird) 50 0.62 0.9\n",
344
- " limpkin 50 0.98 1\n",
345
- " common gallinule 50 0.92 0.96\n",
346
- " American coot 50 0.9 0.98\n",
347
- " bustard 50 0.92 0.96\n",
348
- " ruddy turnstone 50 0.94 1\n",
349
- " dunlin 50 0.86 0.94\n",
350
- " common redshank 50 0.9 0.96\n",
351
- " dowitcher 50 0.84 0.96\n",
352
- " oystercatcher 50 0.86 0.94\n",
353
- " pelican 50 0.92 0.96\n",
354
- " king penguin 50 0.88 0.96\n",
355
- " albatross 50 0.9 1\n",
356
- " grey whale 50 0.84 0.92\n",
357
- " killer whale 50 0.92 1\n",
358
- " dugong 50 0.84 0.96\n",
359
- " sea lion 50 0.82 0.92\n",
360
- " Chihuahua 50 0.66 0.84\n",
361
- " Japanese Chin 50 0.72 0.98\n",
362
- " Maltese 50 0.76 0.94\n",
363
- " Pekingese 50 0.84 0.94\n",
364
- " Shih Tzu 50 0.74 0.96\n",
365
- " King Charles Spaniel 50 0.88 0.98\n",
366
- " Papillon 50 0.86 0.94\n",
367
- " toy terrier 50 0.48 0.94\n",
368
- " Rhodesian Ridgeback 50 0.76 0.98\n",
369
- " Afghan Hound 50 0.84 1\n",
370
- " Basset Hound 50 0.8 0.92\n",
371
- " Beagle 50 0.82 0.96\n",
372
- " Bloodhound 50 0.48 0.72\n",
373
- " Bluetick Coonhound 50 0.86 0.94\n",
374
- " Black and Tan Coonhound 50 0.54 0.8\n",
375
- "Treeing Walker Coonhound 50 0.66 0.98\n",
376
- " English foxhound 50 0.32 0.84\n",
377
- " Redbone Coonhound 50 0.62 0.94\n",
378
- " borzoi 50 0.92 1\n",
379
- " Irish Wolfhound 50 0.48 0.88\n",
380
- " Italian Greyhound 50 0.76 0.98\n",
381
- " Whippet 50 0.74 0.92\n",
382
- " Ibizan Hound 50 0.6 0.86\n",
383
- " Norwegian Elkhound 50 0.88 0.98\n",
384
- " Otterhound 50 0.62 0.9\n",
385
- " Saluki 50 0.72 0.92\n",
386
- " Scottish Deerhound 50 0.86 0.98\n",
387
- " Weimaraner 50 0.88 0.94\n",
388
- "Staffordshire Bull Terrier 50 0.66 0.98\n",
389
- "American Staffordshire Terrier 50 0.64 0.92\n",
390
- " Bedlington Terrier 50 0.9 0.92\n",
391
- " Border Terrier 50 0.86 0.92\n",
392
- " Kerry Blue Terrier 50 0.78 0.98\n",
393
- " Irish Terrier 50 0.7 0.96\n",
394
- " Norfolk Terrier 50 0.68 0.9\n",
395
- " Norwich Terrier 50 0.72 1\n",
396
- " Yorkshire Terrier 50 0.66 0.9\n",
397
- " Wire Fox Terrier 50 0.64 0.98\n",
398
- " Lakeland Terrier 50 0.74 0.92\n",
399
- " Sealyham Terrier 50 0.76 0.9\n",
400
- " Airedale Terrier 50 0.82 0.92\n",
401
- " Cairn Terrier 50 0.76 0.9\n",
402
- " Australian Terrier 50 0.48 0.84\n",
403
- " Dandie Dinmont Terrier 50 0.82 0.92\n",
404
- " Boston Terrier 50 0.92 1\n",
405
- " Miniature Schnauzer 50 0.68 0.9\n",
406
- " Giant Schnauzer 50 0.72 0.98\n",
407
- " Standard Schnauzer 50 0.74 1\n",
408
- " Scottish Terrier 50 0.76 0.96\n",
409
- " Tibetan Terrier 50 0.48 1\n",
410
- "Australian Silky Terrier 50 0.66 0.96\n",
411
- "Soft-coated Wheaten Terrier 50 0.74 0.96\n",
412
- "West Highland White Terrier 50 0.88 0.96\n",
413
- " Lhasa Apso 50 0.68 0.96\n",
414
- " Flat-Coated Retriever 50 0.72 0.94\n",
415
- " Curly-coated Retriever 50 0.82 0.94\n",
416
- " Golden Retriever 50 0.86 0.94\n",
417
- " Labrador Retriever 50 0.82 0.94\n",
418
- "Chesapeake Bay Retriever 50 0.76 0.96\n",
419
- "German Shorthaired Pointer 50 0.8 0.96\n",
420
- " Vizsla 50 0.68 0.96\n",
421
- " English Setter 50 0.7 1\n",
422
- " Irish Setter 50 0.8 0.9\n",
423
- " Gordon Setter 50 0.84 0.92\n",
424
- " Brittany 50 0.84 0.96\n",
425
- " Clumber Spaniel 50 0.92 0.96\n",
426
- "English Springer Spaniel 50 0.88 1\n",
427
- " Welsh Springer Spaniel 50 0.92 1\n",
428
- " Cocker Spaniels 50 0.7 0.94\n",
429
- " Sussex Spaniel 50 0.72 0.92\n",
430
- " Irish Water Spaniel 50 0.88 0.98\n",
431
- " Kuvasz 50 0.66 0.9\n",
432
- " Schipperke 50 0.9 0.98\n",
433
- " Groenendael 50 0.8 0.94\n",
434
- " Malinois 50 0.86 0.98\n",
435
- " Briard 50 0.52 0.8\n",
436
- " Australian Kelpie 50 0.6 0.88\n",
437
- " Komondor 50 0.88 0.94\n",
438
- " Old English Sheepdog 50 0.94 0.98\n",
439
- " Shetland Sheepdog 50 0.74 0.9\n",
440
- " collie 50 0.6 0.96\n",
441
- " Border Collie 50 0.74 0.96\n",
442
- " Bouvier des Flandres 50 0.78 0.94\n",
443
- " Rottweiler 50 0.88 0.96\n",
444
- " German Shepherd Dog 50 0.8 0.98\n",
445
- " Dobermann 50 0.68 0.96\n",
446
- " Miniature Pinscher 50 0.76 0.88\n",
447
- "Greater Swiss Mountain Dog 50 0.68 0.94\n",
448
- " Bernese Mountain Dog 50 0.96 1\n",
449
- " Appenzeller Sennenhund 50 0.22 1\n",
450
- " Entlebucher Sennenhund 50 0.64 0.98\n",
451
- " Boxer 50 0.7 0.92\n",
452
- " Bullmastiff 50 0.78 0.98\n",
453
- " Tibetan Mastiff 50 0.88 0.96\n",
454
- " French Bulldog 50 0.84 0.94\n",
455
- " Great Dane 50 0.54 0.9\n",
456
- " St. Bernard 50 0.92 1\n",
457
- " husky 50 0.46 0.98\n",
458
- " Alaskan Malamute 50 0.76 0.96\n",
459
- " Siberian Husky 50 0.46 0.98\n",
460
- " Dalmatian 50 0.94 0.98\n",
461
- " Affenpinscher 50 0.78 0.9\n",
462
- " Basenji 50 0.92 0.94\n",
463
- " pug 50 0.94 0.98\n",
464
- " Leonberger 50 1 1\n",
465
- " Newfoundland 50 0.78 0.96\n",
466
- " Pyrenean Mountain Dog 50 0.78 0.96\n",
467
- " Samoyed 50 0.96 1\n",
468
- " Pomeranian 50 0.98 1\n",
469
- " Chow Chow 50 0.9 0.96\n",
470
- " Keeshond 50 0.88 0.94\n",
471
- " Griffon Bruxellois 50 0.84 0.98\n",
472
- " Pembroke Welsh Corgi 50 0.82 0.94\n",
473
- " Cardigan Welsh Corgi 50 0.66 0.98\n",
474
- " Toy Poodle 50 0.52 0.88\n",
475
- " Miniature Poodle 50 0.52 0.92\n",
476
- " Standard Poodle 50 0.8 1\n",
477
- " Mexican hairless dog 50 0.88 0.98\n",
478
- " grey wolf 50 0.82 0.92\n",
479
- " Alaskan tundra wolf 50 0.78 0.98\n",
480
- " red wolf 50 0.48 0.9\n",
481
- " coyote 50 0.64 0.86\n",
482
- " dingo 50 0.76 0.88\n",
483
- " dhole 50 0.9 0.98\n",
484
- " African wild dog 50 0.98 1\n",
485
- " hyena 50 0.88 0.96\n",
486
- " red fox 50 0.54 0.92\n",
487
- " kit fox 50 0.72 0.98\n",
488
- " Arctic fox 50 0.94 1\n",
489
- " grey fox 50 0.7 0.94\n",
490
- " tabby cat 50 0.54 0.92\n",
491
- " tiger cat 50 0.22 0.94\n",
492
- " Persian cat 50 0.9 0.98\n",
493
- " Siamese cat 50 0.96 1\n",
494
- " Egyptian Mau 50 0.54 0.8\n",
495
- " cougar 50 0.9 1\n",
496
- " lynx 50 0.72 0.88\n",
497
- " leopard 50 0.78 0.98\n",
498
- " snow leopard 50 0.9 0.98\n",
499
- " jaguar 50 0.7 0.94\n",
500
- " lion 50 0.9 0.98\n",
501
- " tiger 50 0.92 0.98\n",
502
- " cheetah 50 0.94 0.98\n",
503
- " brown bear 50 0.94 0.98\n",
504
- " American black bear 50 0.8 1\n",
505
- " polar bear 50 0.84 0.96\n",
506
- " sloth bear 50 0.72 0.92\n",
507
- " mongoose 50 0.7 0.92\n",
508
- " meerkat 50 0.82 0.92\n",
509
- " tiger beetle 50 0.92 0.94\n",
510
- " ladybug 50 0.86 0.94\n",
511
- " ground beetle 50 0.64 0.94\n",
512
- " longhorn beetle 50 0.62 0.88\n",
513
- " leaf beetle 50 0.64 0.98\n",
514
- " dung beetle 50 0.86 0.98\n",
515
- " rhinoceros beetle 50 0.86 0.94\n",
516
- " weevil 50 0.9 1\n",
517
- " fly 50 0.78 0.94\n",
518
- " bee 50 0.68 0.94\n",
519
- " ant 50 0.68 0.78\n",
520
- " grasshopper 50 0.5 0.92\n",
521
- " cricket 50 0.64 0.92\n",
522
- " stick insect 50 0.64 0.92\n",
523
- " cockroach 50 0.72 0.8\n",
524
- " mantis 50 0.64 0.86\n",
525
- " cicada 50 0.9 0.96\n",
526
- " leafhopper 50 0.88 0.94\n",
527
- " lacewing 50 0.78 0.92\n",
528
- " dragonfly 50 0.82 0.98\n",
529
- " damselfly 50 0.82 1\n",
530
- " red admiral 50 0.94 0.96\n",
531
- " ringlet 50 0.86 0.98\n",
532
- " monarch butterfly 50 0.9 0.92\n",
533
- " small white 50 0.9 1\n",
534
- " sulphur butterfly 50 0.92 1\n",
535
- "gossamer-winged butterfly 50 0.88 1\n",
536
- " starfish 50 0.88 0.92\n",
537
- " sea urchin 50 0.84 0.94\n",
538
- " sea cucumber 50 0.66 0.84\n",
539
- " cottontail rabbit 50 0.72 0.94\n",
540
- " hare 50 0.84 0.96\n",
541
- " Angora rabbit 50 0.94 0.98\n",
542
- " hamster 50 0.96 1\n",
543
- " porcupine 50 0.88 0.98\n",
544
- " fox squirrel 50 0.76 0.94\n",
545
- " marmot 50 0.92 0.96\n",
546
- " beaver 50 0.78 0.94\n",
547
- " guinea pig 50 0.78 0.94\n",
548
- " common sorrel 50 0.96 0.98\n",
549
- " zebra 50 0.94 0.96\n",
550
- " pig 50 0.5 0.76\n",
551
- " wild boar 50 0.84 0.96\n",
552
- " warthog 50 0.84 0.96\n",
553
- " hippopotamus 50 0.88 0.96\n",
554
- " ox 50 0.48 0.94\n",
555
- " water buffalo 50 0.78 0.94\n",
556
- " bison 50 0.88 0.96\n",
557
- " ram 50 0.58 0.92\n",
558
- " bighorn sheep 50 0.66 1\n",
559
- " Alpine ibex 50 0.92 0.98\n",
560
- " hartebeest 50 0.94 1\n",
561
- " impala 50 0.82 0.96\n",
562
- " gazelle 50 0.7 0.96\n",
563
- " dromedary 50 0.9 1\n",
564
- " llama 50 0.82 0.94\n",
565
- " weasel 50 0.44 0.92\n",
566
- " mink 50 0.78 0.96\n",
567
- " European polecat 50 0.46 0.9\n",
568
- " black-footed ferret 50 0.68 0.96\n",
569
- " otter 50 0.66 0.88\n",
570
- " skunk 50 0.96 0.96\n",
571
- " badger 50 0.86 0.92\n",
572
- " armadillo 50 0.88 0.9\n",
573
- " three-toed sloth 50 0.96 1\n",
574
- " orangutan 50 0.78 0.92\n",
575
- " gorilla 50 0.82 0.94\n",
576
- " chimpanzee 50 0.84 0.94\n",
577
- " gibbon 50 0.76 0.86\n",
578
- " siamang 50 0.68 0.94\n",
579
- " guenon 50 0.8 0.94\n",
580
- " patas monkey 50 0.62 0.82\n",
581
- " baboon 50 0.9 0.98\n",
582
- " macaque 50 0.8 0.86\n",
583
- " langur 50 0.6 0.82\n",
584
- " black-and-white colobus 50 0.86 0.9\n",
585
- " proboscis monkey 50 1 1\n",
586
- " marmoset 50 0.74 0.98\n",
587
- " white-headed capuchin 50 0.72 0.9\n",
588
- " howler monkey 50 0.86 0.94\n",
589
- " titi 50 0.5 0.9\n",
590
- "Geoffroy's spider monkey 50 0.42 0.8\n",
591
- " common squirrel monkey 50 0.76 0.92\n",
592
- " ring-tailed lemur 50 0.72 0.94\n",
593
- " indri 50 0.9 0.96\n",
594
- " Asian elephant 50 0.58 0.92\n",
595
- " African bush elephant 50 0.7 0.98\n",
596
- " red panda 50 0.94 0.94\n",
597
- " giant panda 50 0.94 0.98\n",
598
- " snoek 50 0.74 0.9\n",
599
- " eel 50 0.6 0.84\n",
600
- " coho salmon 50 0.84 0.96\n",
601
- " rock beauty 50 0.88 0.98\n",
602
- " clownfish 50 0.78 0.98\n",
603
- " sturgeon 50 0.68 0.94\n",
604
- " garfish 50 0.62 0.8\n",
605
- " lionfish 50 0.96 0.96\n",
606
- " pufferfish 50 0.88 0.96\n",
607
- " abacus 50 0.74 0.88\n",
608
- " abaya 50 0.84 0.92\n",
609
- " academic gown 50 0.42 0.86\n",
610
- " accordion 50 0.8 0.9\n",
611
- " acoustic guitar 50 0.5 0.76\n",
612
- " aircraft carrier 50 0.8 0.96\n",
613
- " airliner 50 0.92 1\n",
614
- " airship 50 0.76 0.82\n",
615
- " altar 50 0.64 0.98\n",
616
- " ambulance 50 0.88 0.98\n",
617
- " amphibious vehicle 50 0.64 0.94\n",
618
- " analog clock 50 0.52 0.92\n",
619
- " apiary 50 0.82 0.96\n",
620
- " apron 50 0.7 0.84\n",
621
- " waste container 50 0.4 0.8\n",
622
- " assault rifle 50 0.42 0.84\n",
623
- " backpack 50 0.34 0.64\n",
624
- " bakery 50 0.4 0.68\n",
625
- " balance beam 50 0.8 0.98\n",
626
- " balloon 50 0.86 0.96\n",
627
- " ballpoint pen 50 0.52 0.96\n",
628
- " Band-Aid 50 0.7 0.9\n",
629
- " banjo 50 0.84 1\n",
630
- " baluster 50 0.68 0.94\n",
631
- " barbell 50 0.56 0.9\n",
632
- " barber chair 50 0.7 0.92\n",
633
- " barbershop 50 0.54 0.86\n",
634
- " barn 50 0.96 0.96\n",
635
- " barometer 50 0.84 0.98\n",
636
- " barrel 50 0.56 0.88\n",
637
- " wheelbarrow 50 0.66 0.88\n",
638
- " baseball 50 0.74 0.98\n",
639
- " basketball 50 0.88 0.98\n",
640
- " bassinet 50 0.66 0.92\n",
641
- " bassoon 50 0.74 0.98\n",
642
- " swimming cap 50 0.62 0.88\n",
643
- " bath towel 50 0.54 0.78\n",
644
- " bathtub 50 0.4 0.88\n",
645
- " station wagon 50 0.66 0.84\n",
646
- " lighthouse 50 0.78 0.94\n",
647
- " beaker 50 0.52 0.68\n",
648
- " military cap 50 0.84 0.96\n",
649
- " beer bottle 50 0.66 0.88\n",
650
- " beer glass 50 0.6 0.84\n",
651
- " bell-cot 50 0.56 0.96\n",
652
- " bib 50 0.58 0.82\n",
653
- " tandem bicycle 50 0.86 0.96\n",
654
- " bikini 50 0.56 0.88\n",
655
- " ring binder 50 0.64 0.84\n",
656
- " binoculars 50 0.54 0.78\n",
657
- " birdhouse 50 0.86 0.94\n",
658
- " boathouse 50 0.74 0.92\n",
659
- " bobsleigh 50 0.92 0.96\n",
660
- " bolo tie 50 0.8 0.94\n",
661
- " poke bonnet 50 0.64 0.86\n",
662
- " bookcase 50 0.66 0.92\n",
663
- " bookstore 50 0.62 0.88\n",
664
- " bottle cap 50 0.58 0.7\n",
665
- " bow 50 0.72 0.86\n",
666
- " bow tie 50 0.7 0.9\n",
667
- " brass 50 0.92 0.96\n",
668
- " bra 50 0.5 0.7\n",
669
- " breakwater 50 0.62 0.86\n",
670
- " breastplate 50 0.4 0.9\n",
671
- " broom 50 0.6 0.86\n",
672
- " bucket 50 0.66 0.8\n",
673
- " buckle 50 0.5 0.68\n",
674
- " bulletproof vest 50 0.5 0.78\n",
675
- " high-speed train 50 0.94 0.96\n",
676
- " butcher shop 50 0.74 0.94\n",
677
- " taxicab 50 0.64 0.86\n",
678
- " cauldron 50 0.44 0.66\n",
679
- " candle 50 0.48 0.74\n",
680
- " cannon 50 0.88 0.94\n",
681
- " canoe 50 0.94 1\n",
682
- " can opener 50 0.66 0.86\n",
683
- " cardigan 50 0.68 0.8\n",
684
- " car mirror 50 0.94 0.96\n",
685
- " carousel 50 0.94 0.98\n",
686
- " tool kit 50 0.56 0.78\n",
687
- " carton 50 0.42 0.7\n",
688
- " car wheel 50 0.38 0.74\n",
689
- "automated teller machine 50 0.76 0.94\n",
690
- " cassette 50 0.52 0.8\n",
691
- " cassette player 50 0.28 0.9\n",
692
- " castle 50 0.78 0.88\n",
693
- " catamaran 50 0.78 1\n",
694
- " CD player 50 0.52 0.82\n",
695
- " cello 50 0.82 1\n",
696
- " mobile phone 50 0.68 0.86\n",
697
- " chain 50 0.38 0.66\n",
698
- " chain-link fence 50 0.7 0.84\n",
699
- " chain mail 50 0.64 0.9\n",
700
- " chainsaw 50 0.84 0.92\n",
701
- " chest 50 0.68 0.92\n",
702
- " chiffonier 50 0.26 0.64\n",
703
- " chime 50 0.62 0.84\n",
704
- " china cabinet 50 0.82 0.96\n",
705
- " Christmas stocking 50 0.92 0.94\n",
706
- " church 50 0.62 0.9\n",
707
- " movie theater 50 0.58 0.88\n",
708
- " cleaver 50 0.32 0.62\n",
709
- " cliff dwelling 50 0.88 1\n",
710
- " cloak 50 0.32 0.64\n",
711
- " clogs 50 0.58 0.88\n",
712
- " cocktail shaker 50 0.62 0.7\n",
713
- " coffee mug 50 0.44 0.72\n",
714
- " coffeemaker 50 0.64 0.92\n",
715
- " coil 50 0.66 0.84\n",
716
- " combination lock 50 0.64 0.84\n",
717
- " computer keyboard 50 0.7 0.82\n",
718
- " confectionery store 50 0.54 0.86\n",
719
- " container ship 50 0.82 0.98\n",
720
- " convertible 50 0.78 0.98\n",
721
- " corkscrew 50 0.82 0.92\n",
722
- " cornet 50 0.46 0.88\n",
723
- " cowboy boot 50 0.64 0.8\n",
724
- " cowboy hat 50 0.64 0.82\n",
725
- " cradle 50 0.38 0.8\n",
726
- " crane (machine) 50 0.78 0.94\n",
727
- " crash helmet 50 0.92 0.96\n",
728
- " crate 50 0.52 0.82\n",
729
- " infant bed 50 0.74 1\n",
730
- " Crock Pot 50 0.78 0.9\n",
731
- " croquet ball 50 0.9 0.96\n",
732
- " crutch 50 0.46 0.7\n",
733
- " cuirass 50 0.54 0.86\n",
734
- " dam 50 0.74 0.92\n",
735
- " desk 50 0.6 0.86\n",
736
- " desktop computer 50 0.54 0.94\n",
737
- " rotary dial telephone 50 0.88 0.94\n",
738
- " diaper 50 0.68 0.84\n",
739
- " digital clock 50 0.54 0.76\n",
740
- " digital watch 50 0.58 0.86\n",
741
- " dining table 50 0.76 0.9\n",
742
- " dishcloth 50 0.94 1\n",
743
- " dishwasher 50 0.44 0.78\n",
744
- " disc brake 50 0.98 1\n",
745
- " dock 50 0.54 0.94\n",
746
- " dog sled 50 0.84 1\n",
747
- " dome 50 0.72 0.92\n",
748
- " doormat 50 0.56 0.82\n",
749
- " drilling rig 50 0.84 0.96\n",
750
- " drum 50 0.38 0.68\n",
751
- " drumstick 50 0.56 0.72\n",
752
- " dumbbell 50 0.62 0.9\n",
753
- " Dutch oven 50 0.7 0.84\n",
754
- " electric fan 50 0.82 0.86\n",
755
- " electric guitar 50 0.62 0.84\n",
756
- " electric locomotive 50 0.92 0.98\n",
757
- " entertainment center 50 0.9 0.98\n",
758
- " envelope 50 0.44 0.86\n",
759
- " espresso machine 50 0.72 0.94\n",
760
- " face powder 50 0.7 0.92\n",
761
- " feather boa 50 0.7 0.84\n",
762
- " filing cabinet 50 0.88 0.98\n",
763
- " fireboat 50 0.94 0.98\n",
764
- " fire engine 50 0.84 0.9\n",
765
- " fire screen sheet 50 0.62 0.76\n",
766
- " flagpole 50 0.74 0.88\n",
767
- " flute 50 0.36 0.72\n",
768
- " folding chair 50 0.62 0.84\n",
769
- " football helmet 50 0.86 0.94\n",
770
- " forklift 50 0.8 0.92\n",
771
- " fountain 50 0.84 0.94\n",
772
- " fountain pen 50 0.76 0.92\n",
773
- " four-poster bed 50 0.78 0.94\n",
774
- " freight car 50 0.96 1\n",
775
- " French horn 50 0.76 0.92\n",
776
- " frying pan 50 0.36 0.78\n",
777
- " fur coat 50 0.84 0.96\n",
778
- " garbage truck 50 0.9 0.98\n",
779
- " gas mask 50 0.84 0.92\n",
780
- " gas pump 50 0.9 0.98\n",
781
- " goblet 50 0.68 0.82\n",
782
- " go-kart 50 0.9 1\n",
783
- " golf ball 50 0.84 0.9\n",
784
- " golf cart 50 0.78 0.86\n",
785
- " gondola 50 0.98 0.98\n",
786
- " gong 50 0.74 0.92\n",
787
- " gown 50 0.62 0.96\n",
788
- " grand piano 50 0.7 0.96\n",
789
- " greenhouse 50 0.8 0.98\n",
790
- " grille 50 0.72 0.9\n",
791
- " grocery store 50 0.66 0.94\n",
792
- " guillotine 50 0.86 0.92\n",
793
- " barrette 50 0.52 0.66\n",
794
- " hair spray 50 0.5 0.74\n",
795
- " half-track 50 0.78 0.9\n",
796
- " hammer 50 0.56 0.76\n",
797
- " hamper 50 0.64 0.84\n",
798
- " hair dryer 50 0.56 0.74\n",
799
- " hand-held computer 50 0.42 0.86\n",
800
- " handkerchief 50 0.78 0.94\n",
801
- " hard disk drive 50 0.76 0.84\n",
802
- " harmonica 50 0.7 0.88\n",
803
- " harp 50 0.88 0.96\n",
804
- " harvester 50 0.78 1\n",
805
- " hatchet 50 0.54 0.74\n",
806
- " holster 50 0.66 0.84\n",
807
- " home theater 50 0.64 0.94\n",
808
- " honeycomb 50 0.56 0.88\n",
809
- " hook 50 0.3 0.6\n",
810
- " hoop skirt 50 0.64 0.86\n",
811
- " horizontal bar 50 0.68 0.98\n",
812
- " horse-drawn vehicle 50 0.88 0.94\n",
813
- " hourglass 50 0.88 0.96\n",
814
- " iPod 50 0.76 0.94\n",
815
- " clothes iron 50 0.82 0.88\n",
816
- " jack-o'-lantern 50 0.98 0.98\n",
817
- " jeans 50 0.68 0.84\n",
818
- " jeep 50 0.72 0.9\n",
819
- " T-shirt 50 0.72 0.96\n",
820
- " jigsaw puzzle 50 0.84 0.94\n",
821
- " pulled rickshaw 50 0.86 0.94\n",
822
- " joystick 50 0.8 0.9\n",
823
- " kimono 50 0.84 0.96\n",
824
- " knee pad 50 0.62 0.88\n",
825
- " knot 50 0.66 0.8\n",
826
- " lab coat 50 0.8 0.96\n",
827
- " ladle 50 0.36 0.64\n",
828
- " lampshade 50 0.48 0.84\n",
829
- " laptop computer 50 0.26 0.88\n",
830
- " lawn mower 50 0.78 0.96\n",
831
- " lens cap 50 0.46 0.72\n",
832
- " paper knife 50 0.26 0.5\n",
833
- " library 50 0.54 0.9\n",
834
- " lifeboat 50 0.92 0.98\n",
835
- " lighter 50 0.56 0.78\n",
836
- " limousine 50 0.76 0.92\n",
837
- " ocean liner 50 0.88 0.94\n",
838
- " lipstick 50 0.74 0.9\n",
839
- " slip-on shoe 50 0.74 0.92\n",
840
- " lotion 50 0.5 0.86\n",
841
- " speaker 50 0.52 0.68\n",
842
- " loupe 50 0.32 0.52\n",
843
- " sawmill 50 0.72 0.9\n",
844
- " magnetic compass 50 0.52 0.82\n",
845
- " mail bag 50 0.68 0.92\n",
846
- " mailbox 50 0.82 0.92\n",
847
- " tights 50 0.22 0.94\n",
848
- " tank suit 50 0.24 0.9\n",
849
- " manhole cover 50 0.96 0.98\n",
850
- " maraca 50 0.74 0.9\n",
851
- " marimba 50 0.84 0.94\n",
852
- " mask 50 0.44 0.82\n",
853
- " match 50 0.66 0.9\n",
854
- " maypole 50 0.96 1\n",
855
- " maze 50 0.8 0.96\n",
856
- " measuring cup 50 0.54 0.76\n",
857
- " medicine chest 50 0.6 0.84\n",
858
- " megalith 50 0.8 0.92\n",
859
- " microphone 50 0.52 0.7\n",
860
- " microwave oven 50 0.48 0.72\n",
861
- " military uniform 50 0.62 0.84\n",
862
- " milk can 50 0.68 0.82\n",
863
- " minibus 50 0.7 1\n",
864
- " miniskirt 50 0.46 0.76\n",
865
- " minivan 50 0.38 0.8\n",
866
- " missile 50 0.4 0.84\n",
867
- " mitten 50 0.76 0.88\n",
868
- " mixing bowl 50 0.8 0.92\n",
869
- " mobile home 50 0.54 0.78\n",
870
- " Model T 50 0.92 0.96\n",
871
- " modem 50 0.58 0.86\n",
872
- " monastery 50 0.44 0.9\n",
873
- " monitor 50 0.4 0.86\n",
874
- " moped 50 0.56 0.94\n",
875
- " mortar 50 0.68 0.94\n",
876
- " square academic cap 50 0.5 0.84\n",
877
- " mosque 50 0.9 1\n",
878
- " mosquito net 50 0.9 0.98\n",
879
- " scooter 50 0.9 0.98\n",
880
- " mountain bike 50 0.78 0.96\n",
881
- " tent 50 0.88 0.96\n",
882
- " computer mouse 50 0.42 0.82\n",
883
- " mousetrap 50 0.76 0.88\n",
884
- " moving van 50 0.4 0.72\n",
885
- " muzzle 50 0.5 0.72\n",
886
- " nail 50 0.68 0.74\n",
887
- " neck brace 50 0.56 0.68\n",
888
- " necklace 50 0.86 1\n",
889
- " nipple 50 0.7 0.88\n",
890
- " notebook computer 50 0.34 0.84\n",
891
- " obelisk 50 0.8 0.92\n",
892
- " oboe 50 0.6 0.84\n",
893
- " ocarina 50 0.8 0.86\n",
894
- " odometer 50 0.96 1\n",
895
- " oil filter 50 0.58 0.82\n",
896
- " organ 50 0.82 0.9\n",
897
- " oscilloscope 50 0.9 0.96\n",
898
- " overskirt 50 0.2 0.7\n",
899
- " bullock cart 50 0.7 0.94\n",
900
- " oxygen mask 50 0.46 0.84\n",
901
- " packet 50 0.5 0.78\n",
902
- " paddle 50 0.56 0.94\n",
903
- " paddle wheel 50 0.86 0.96\n",
904
- " padlock 50 0.74 0.78\n",
905
- " paintbrush 50 0.62 0.8\n",
906
- " pajamas 50 0.56 0.92\n",
907
- " palace 50 0.64 0.96\n",
908
- " pan flute 50 0.84 0.86\n",
909
- " paper towel 50 0.66 0.84\n",
910
- " parachute 50 0.92 0.94\n",
911
- " parallel bars 50 0.62 0.96\n",
912
- " park bench 50 0.74 0.9\n",
913
- " parking meter 50 0.84 0.92\n",
914
- " passenger car 50 0.5 0.82\n",
915
- " patio 50 0.58 0.84\n",
916
- " payphone 50 0.74 0.92\n",
917
- " pedestal 50 0.52 0.9\n",
918
- " pencil case 50 0.64 0.92\n",
919
- " pencil sharpener 50 0.52 0.78\n",
920
- " perfume 50 0.7 0.9\n",
921
- " Petri dish 50 0.6 0.8\n",
922
- " photocopier 50 0.88 0.98\n",
923
- " plectrum 50 0.7 0.84\n",
924
- " Pickelhaube 50 0.72 0.86\n",
925
- " picket fence 50 0.84 0.94\n",
926
- " pickup truck 50 0.64 0.92\n",
927
- " pier 50 0.52 0.82\n",
928
- " piggy bank 50 0.82 0.94\n",
929
- " pill bottle 50 0.76 0.86\n",
930
- " pillow 50 0.76 0.9\n",
931
- " ping-pong ball 50 0.84 0.88\n",
932
- " pinwheel 50 0.76 0.88\n",
933
- " pirate ship 50 0.76 0.94\n",
934
- " pitcher 50 0.46 0.84\n",
935
- " hand plane 50 0.84 0.94\n",
936
- " planetarium 50 0.88 0.98\n",
937
- " plastic bag 50 0.36 0.62\n",
938
- " plate rack 50 0.52 0.78\n",
939
- " plow 50 0.78 0.88\n",
940
- " plunger 50 0.42 0.7\n",
941
- " Polaroid camera 50 0.84 0.92\n",
942
- " pole 50 0.38 0.74\n",
943
- " police van 50 0.76 0.94\n",
944
- " poncho 50 0.58 0.86\n",
945
- " billiard table 50 0.8 0.88\n",
946
- " soda bottle 50 0.56 0.94\n",
947
- " pot 50 0.78 0.92\n",
948
- " potter's wheel 50 0.9 0.94\n",
949
- " power drill 50 0.42 0.72\n",
950
- " prayer rug 50 0.7 0.86\n",
951
- " printer 50 0.54 0.86\n",
952
- " prison 50 0.7 0.9\n",
953
- " projectile 50 0.28 0.9\n",
954
- " projector 50 0.62 0.84\n",
955
- " hockey puck 50 0.92 0.96\n",
956
- " punching bag 50 0.6 0.68\n",
957
- " purse 50 0.42 0.78\n",
958
- " quill 50 0.68 0.84\n",
959
- " quilt 50 0.64 0.9\n",
960
- " race car 50 0.72 0.92\n",
961
- " racket 50 0.72 0.9\n",
962
- " radiator 50 0.66 0.76\n",
963
- " radio 50 0.64 0.92\n",
964
- " radio telescope 50 0.9 0.96\n",
965
- " rain barrel 50 0.8 0.98\n",
966
- " recreational vehicle 50 0.84 0.94\n",
967
- " reel 50 0.72 0.82\n",
968
- " reflex camera 50 0.72 0.92\n",
969
- " refrigerator 50 0.7 0.9\n",
970
- " remote control 50 0.7 0.88\n",
971
- " restaurant 50 0.5 0.66\n",
972
- " revolver 50 0.82 1\n",
973
- " rifle 50 0.38 0.7\n",
974
- " rocking chair 50 0.62 0.84\n",
975
- " rotisserie 50 0.88 0.92\n",
976
- " eraser 50 0.54 0.76\n",
977
- " rugby ball 50 0.86 0.94\n",
978
- " ruler 50 0.68 0.86\n",
979
- " running shoe 50 0.78 0.94\n",
980
- " safe 50 0.82 0.92\n",
981
- " safety pin 50 0.4 0.62\n",
982
- " salt shaker 50 0.66 0.9\n",
983
- " sandal 50 0.66 0.86\n",
984
- " sarong 50 0.64 0.86\n",
985
- " saxophone 50 0.66 0.88\n",
986
- " scabbard 50 0.76 0.92\n",
987
- " weighing scale 50 0.58 0.78\n",
988
- " school bus 50 0.92 1\n",
989
- " schooner 50 0.84 1\n",
990
- " scoreboard 50 0.9 0.96\n",
991
- " CRT screen 50 0.14 0.7\n",
992
- " screw 50 0.9 0.98\n",
993
- " screwdriver 50 0.3 0.58\n",
994
- " seat belt 50 0.88 0.94\n",
995
- " sewing machine 50 0.76 0.9\n",
996
- " shield 50 0.56 0.82\n",
997
- " shoe store 50 0.78 0.96\n",
998
- " shoji 50 0.8 0.92\n",
999
- " shopping basket 50 0.52 0.88\n",
1000
- " shopping cart 50 0.76 0.92\n",
1001
- " shovel 50 0.62 0.84\n",
1002
- " shower cap 50 0.7 0.84\n",
1003
- " shower curtain 50 0.64 0.82\n",
1004
- " ski 50 0.74 0.92\n",
1005
- " ski mask 50 0.72 0.88\n",
1006
- " sleeping bag 50 0.68 0.8\n",
1007
- " slide rule 50 0.72 0.88\n",
1008
- " sliding door 50 0.44 0.78\n",
1009
- " slot machine 50 0.94 0.98\n",
1010
- " snorkel 50 0.86 0.98\n",
1011
- " snowmobile 50 0.88 1\n",
1012
- " snowplow 50 0.84 0.98\n",
1013
- " soap dispenser 50 0.56 0.86\n",
1014
- " soccer ball 50 0.86 0.96\n",
1015
- " sock 50 0.62 0.76\n",
1016
- " solar thermal collector 50 0.72 0.96\n",
1017
- " sombrero 50 0.6 0.84\n",
1018
- " soup bowl 50 0.56 0.94\n",
1019
- " space bar 50 0.34 0.88\n",
1020
- " space heater 50 0.52 0.74\n",
1021
- " space shuttle 50 0.82 0.96\n",
1022
- " spatula 50 0.3 0.6\n",
1023
- " motorboat 50 0.86 1\n",
1024
- " spider web 50 0.7 0.9\n",
1025
- " spindle 50 0.86 0.98\n",
1026
- " sports car 50 0.6 0.94\n",
1027
- " spotlight 50 0.26 0.6\n",
1028
- " stage 50 0.68 0.86\n",
1029
- " steam locomotive 50 0.94 1\n",
1030
- " through arch bridge 50 0.84 0.96\n",
1031
- " steel drum 50 0.82 0.9\n",
1032
- " stethoscope 50 0.6 0.82\n",
1033
- " scarf 50 0.5 0.92\n",
1034
- " stone wall 50 0.76 0.9\n",
1035
- " stopwatch 50 0.58 0.9\n",
1036
- " stove 50 0.46 0.74\n",
1037
- " strainer 50 0.64 0.84\n",
1038
- " tram 50 0.88 0.96\n",
1039
- " stretcher 50 0.6 0.8\n",
1040
- " couch 50 0.8 0.96\n",
1041
- " stupa 50 0.88 0.88\n",
1042
- " submarine 50 0.72 0.92\n",
1043
- " suit 50 0.4 0.78\n",
1044
- " sundial 50 0.58 0.74\n",
1045
- " sunglass 50 0.14 0.58\n",
1046
- " sunglasses 50 0.28 0.58\n",
1047
- " sunscreen 50 0.32 0.7\n",
1048
- " suspension bridge 50 0.6 0.94\n",
1049
- " mop 50 0.74 0.92\n",
1050
- " sweatshirt 50 0.28 0.66\n",
1051
- " swimsuit 50 0.52 0.82\n",
1052
- " swing 50 0.76 0.84\n",
1053
- " switch 50 0.56 0.76\n",
1054
- " syringe 50 0.62 0.82\n",
1055
- " table lamp 50 0.6 0.88\n",
1056
- " tank 50 0.8 0.96\n",
1057
- " tape player 50 0.46 0.76\n",
1058
- " teapot 50 0.84 1\n",
1059
- " teddy bear 50 0.82 0.94\n",
1060
- " television 50 0.6 0.9\n",
1061
- " tennis ball 50 0.7 0.94\n",
1062
- " thatched roof 50 0.88 0.9\n",
1063
- " front curtain 50 0.8 0.92\n",
1064
- " thimble 50 0.6 0.8\n",
1065
- " threshing machine 50 0.56 0.88\n",
1066
- " throne 50 0.72 0.82\n",
1067
- " tile roof 50 0.72 0.94\n",
1068
- " toaster 50 0.66 0.84\n",
1069
- " tobacco shop 50 0.42 0.7\n",
1070
- " toilet seat 50 0.62 0.88\n",
1071
- " torch 50 0.64 0.84\n",
1072
- " totem pole 50 0.92 0.98\n",
1073
- " tow truck 50 0.62 0.88\n",
1074
- " toy store 50 0.6 0.94\n",
1075
- " tractor 50 0.76 0.98\n",
1076
- " semi-trailer truck 50 0.78 0.92\n",
1077
- " tray 50 0.46 0.64\n",
1078
- " trench coat 50 0.54 0.72\n",
1079
- " tricycle 50 0.72 0.94\n",
1080
- " trimaran 50 0.7 0.98\n",
1081
- " tripod 50 0.58 0.86\n",
1082
- " triumphal arch 50 0.92 0.98\n",
1083
- " trolleybus 50 0.9 1\n",
1084
- " trombone 50 0.54 0.88\n",
1085
- " tub 50 0.24 0.82\n",
1086
- " turnstile 50 0.84 0.94\n",
1087
- " typewriter keyboard 50 0.68 0.98\n",
1088
- " umbrella 50 0.52 0.7\n",
1089
- " unicycle 50 0.74 0.96\n",
1090
- " upright piano 50 0.76 0.9\n",
1091
- " vacuum cleaner 50 0.62 0.9\n",
1092
- " vase 50 0.5 0.78\n",
1093
- " vault 50 0.76 0.92\n",
1094
- " velvet 50 0.2 0.42\n",
1095
- " vending machine 50 0.9 1\n",
1096
- " vestment 50 0.54 0.82\n",
1097
- " viaduct 50 0.78 0.86\n",
1098
- " violin 50 0.68 0.78\n",
1099
- " volleyball 50 0.86 1\n",
1100
- " waffle iron 50 0.72 0.88\n",
1101
- " wall clock 50 0.54 0.88\n",
1102
- " wallet 50 0.52 0.9\n",
1103
- " wardrobe 50 0.68 0.88\n",
1104
- " military aircraft 50 0.9 0.98\n",
1105
- " sink 50 0.72 0.96\n",
1106
- " washing machine 50 0.78 0.94\n",
1107
- " water bottle 50 0.54 0.74\n",
1108
- " water jug 50 0.22 0.74\n",
1109
- " water tower 50 0.9 0.96\n",
1110
- " whiskey jug 50 0.64 0.74\n",
1111
- " whistle 50 0.72 0.84\n",
1112
- " wig 50 0.84 0.9\n",
1113
- " window screen 50 0.68 0.8\n",
1114
- " window shade 50 0.52 0.76\n",
1115
- " Windsor tie 50 0.22 0.66\n",
1116
- " wine bottle 50 0.42 0.82\n",
1117
- " wing 50 0.54 0.96\n",
1118
- " wok 50 0.46 0.82\n",
1119
- " wooden spoon 50 0.58 0.8\n",
1120
- " wool 50 0.32 0.82\n",
1121
- " split-rail fence 50 0.74 0.9\n",
1122
- " shipwreck 50 0.84 0.96\n",
1123
- " yawl 50 0.78 0.96\n",
1124
- " yurt 50 0.84 1\n",
1125
- " website 50 0.98 1\n",
1126
- " comic book 50 0.62 0.9\n",
1127
- " crossword 50 0.84 0.88\n",
1128
- " traffic sign 50 0.78 0.9\n",
1129
- " traffic light 50 0.8 0.94\n",
1130
- " dust jacket 50 0.72 0.94\n",
1131
- " menu 50 0.82 0.96\n",
1132
- " plate 50 0.44 0.88\n",
1133
- " guacamole 50 0.8 0.92\n",
1134
- " consomme 50 0.54 0.88\n",
1135
- " hot pot 50 0.86 0.98\n",
1136
- " trifle 50 0.92 0.98\n",
1137
- " ice cream 50 0.68 0.94\n",
1138
- " ice pop 50 0.62 0.84\n",
1139
- " baguette 50 0.62 0.88\n",
1140
- " bagel 50 0.64 0.92\n",
1141
- " pretzel 50 0.72 0.88\n",
1142
- " cheeseburger 50 0.9 1\n",
1143
- " hot dog 50 0.74 0.94\n",
1144
- " mashed potato 50 0.74 0.9\n",
1145
- " cabbage 50 0.84 0.96\n",
1146
- " broccoli 50 0.9 0.96\n",
1147
- " cauliflower 50 0.82 1\n",
1148
- " zucchini 50 0.74 0.9\n",
1149
- " spaghetti squash 50 0.8 0.96\n",
1150
- " acorn squash 50 0.82 0.96\n",
1151
- " butternut squash 50 0.7 0.94\n",
1152
- " cucumber 50 0.6 0.96\n",
1153
- " artichoke 50 0.84 0.94\n",
1154
- " bell pepper 50 0.84 0.98\n",
1155
- " cardoon 50 0.88 0.94\n",
1156
- " mushroom 50 0.38 0.92\n",
1157
- " Granny Smith 50 0.9 0.96\n",
1158
- " strawberry 50 0.6 0.88\n",
1159
- " orange 50 0.7 0.92\n",
1160
- " lemon 50 0.78 0.98\n",
1161
- " fig 50 0.82 0.96\n",
1162
- " pineapple 50 0.86 0.96\n",
1163
- " banana 50 0.84 0.96\n",
1164
- " jackfruit 50 0.9 0.98\n",
1165
- " custard apple 50 0.86 0.96\n",
1166
- " pomegranate 50 0.82 0.98\n",
1167
- " hay 50 0.8 0.92\n",
1168
- " carbonara 50 0.88 0.94\n",
1169
- " chocolate syrup 50 0.46 0.84\n",
1170
- " dough 50 0.4 0.6\n",
1171
- " meatloaf 50 0.58 0.84\n",
1172
- " pizza 50 0.84 0.96\n",
1173
- " pot pie 50 0.68 0.9\n",
1174
- " burrito 50 0.8 0.98\n",
1175
- " red wine 50 0.54 0.82\n",
1176
- " espresso 50 0.64 0.88\n",
1177
- " cup 50 0.38 0.7\n",
1178
- " eggnog 50 0.38 0.7\n",
1179
- " alp 50 0.54 0.88\n",
1180
- " bubble 50 0.8 0.96\n",
1181
- " cliff 50 0.64 1\n",
1182
- " coral reef 50 0.72 0.96\n",
1183
- " geyser 50 0.94 1\n",
1184
- " lakeshore 50 0.54 0.88\n",
1185
- " promontory 50 0.58 0.94\n",
1186
- " shoal 50 0.6 0.96\n",
1187
- " seashore 50 0.44 0.78\n",
1188
- " valley 50 0.72 0.94\n",
1189
- " volcano 50 0.78 0.96\n",
1190
- " baseball player 50 0.72 0.94\n",
1191
- " bridegroom 50 0.72 0.88\n",
1192
- " scuba diver 50 0.8 1\n",
1193
- " rapeseed 50 0.94 0.98\n",
1194
- " daisy 50 0.96 0.98\n",
1195
- " yellow lady's slipper 50 1 1\n",
1196
- " corn 50 0.4 0.88\n",
1197
- " acorn 50 0.92 0.98\n",
1198
- " rose hip 50 0.92 0.98\n",
1199
- " horse chestnut seed 50 0.94 0.98\n",
1200
- " coral fungus 50 0.96 0.96\n",
1201
- " agaric 50 0.82 0.94\n",
1202
- " gyromitra 50 0.98 1\n",
1203
- " stinkhorn mushroom 50 0.8 0.94\n",
1204
- " earth star 50 0.98 1\n",
1205
- " hen-of-the-woods 50 0.8 0.96\n",
1206
- " bolete 50 0.74 0.94\n",
1207
- " ear 50 0.48 0.94\n",
1208
- " toilet paper 50 0.36 0.68\n",
1209
- "Speed: 0.1ms pre-process, 0.3ms inference, 0.0ms post-process per image at shape (1, 3, 224, 224)\n",
1210
- "Results saved to \u001b[1mruns/val-cls/exp\u001b[0m\n"
1211
- ]
1212
- }
1213
- ],
1214
- "source": [
1215
- "# Validate YOLOv5s on Imagenet val\n",
1216
- "!python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 --half"
1217
- ]
1218
- },
1219
- {
1220
- "cell_type": "markdown",
1221
- "metadata": {
1222
- "id": "ZY2VXXXu74w5"
1223
- },
1224
- "source": [
1225
- "# 3. Train\n",
1226
- "\n",
1227
- "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
1228
- "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
1229
- "<br><br>\n",
1230
- "\n",
1231
- "Train a YOLOv5s Classification model on the [Imagenette](https://image-net.org/) dataset with `--data imagenet`, starting from pretrained `--pretrained yolov5s-cls.pt`.\n",
1232
- "\n",
1233
- "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
1234
- "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
1235
- "- **Training Results** are saved to `runs/train-cls/` with incrementing run directories, i.e. `runs/train-cls/exp2`, `runs/train-cls/exp3` etc.\n",
1236
- "<br><br>\n",
1237
- "\n",
1238
- "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
1239
- "\n",
1240
- "## Train on Custom Data with Roboflow 🌟 NEW\n",
1241
- "\n",
1242
- "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
1243
- "\n",
1244
- "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-classification-custom-data/](https://blog.roboflow.com/train-yolov5-classification-custom-data/?ref=ultralytics)\n",
1245
- "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KZiKUAjtARHAfZCXbJRv14-pOnIsBLPV?usp=sharing)\n",
1246
- "<br>\n",
1247
- "\n",
1248
- "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://user-images.githubusercontent.com/26833433/202802162-92e60571-ab58-4409-948d-b31fddcd3c6f.png\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
1249
- ]
1250
- },
1251
- {
1252
- "cell_type": "code",
1253
- "execution_count": null,
1254
- "metadata": {
1255
- "id": "i3oKtE4g-aNn"
1256
- },
1257
- "outputs": [],
1258
- "source": [
1259
- "# @title Select YOLOv5 🚀 logger {run: 'auto'}\n",
1260
- "logger = \"Comet\" # @param ['Comet', 'ClearML', 'TensorBoard']\n",
1261
- "\n",
1262
- "if logger == \"Comet\":\n",
1263
- " %pip install -q comet_ml\n",
1264
- " import comet_ml\n",
1265
- "\n",
1266
- " comet_ml.init()\n",
1267
- "elif logger == \"ClearML\":\n",
1268
- " %pip install -q clearml\n",
1269
- " import clearml\n",
1270
- "\n",
1271
- " clearml.browser_login()\n",
1272
- "elif logger == \"TensorBoard\":\n",
1273
- " %load_ext tensorboard\n",
1274
- " %tensorboard --logdir runs/train"
1275
- ]
1276
- },
1277
- {
1278
- "cell_type": "code",
1279
- "execution_count": null,
1280
- "metadata": {
1281
- "colab": {
1282
- "base_uri": "https://localhost:8080/"
1283
- },
1284
- "id": "1NcFxRcFdJ_O",
1285
- "outputId": "77c8d487-16db-4073-b3ea-06cabf2e7766"
1286
- },
1287
- "outputs": [
1288
- {
1289
- "name": "stdout",
1290
- "output_type": "stream",
1291
- "text": [
1292
- "\u001b[34m\u001b[1mclassify/train: \u001b[0mmodel=yolov5s-cls.pt, data=imagenette160, epochs=5, batch_size=64, imgsz=224, nosave=False, cache=ram, device=, workers=8, project=runs/train-cls, name=exp, exist_ok=False, pretrained=True, optimizer=Adam, lr0=0.001, decay=5e-05, label_smoothing=0.1, cutoff=None, dropout=None, verbose=False, seed=0, local_rank=-1\n",
1293
- "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
1294
- "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
1295
- "\n",
1296
- "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-cls', view at http://localhost:6006/\n",
1297
- "\n",
1298
- "Dataset not found ⚠️, missing path /content/datasets/imagenette160, attempting download...\n",
1299
- "Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/imagenette160.zip to /content/datasets/imagenette160.zip...\n",
1300
- "100% 103M/103M [00:00<00:00, 347MB/s] \n",
1301
- "Unzipping /content/datasets/imagenette160.zip...\n",
1302
- "Dataset download success ✅ (3.3s), saved to \u001b[1m/content/datasets/imagenette160\u001b[0m\n",
1303
- "\n",
1304
- "\u001b[34m\u001b[1malbumentations: \u001b[0mRandomResizedCrop(p=1.0, height=224, width=224, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=1), HorizontalFlip(p=0.5), ColorJitter(p=0.5, brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=[0, 0]), Normalize(p=1.0, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0), ToTensorV2(always_apply=True, p=1.0, transpose_mask=False)\n",
1305
- "Model summary: 149 layers, 4185290 parameters, 4185290 gradients, 10.5 GFLOPs\n",
1306
- "\u001b[34m\u001b[1moptimizer:\u001b[0m Adam(lr=0.001) with parameter groups 32 weight(decay=0.0), 33 weight(decay=5e-05), 33 bias\n",
1307
- "Image sizes 224 train, 224 test\n",
1308
- "Using 1 dataloader workers\n",
1309
- "Logging results to \u001b[1mruns/train-cls/exp\u001b[0m\n",
1310
- "Starting yolov5s-cls.pt training on imagenette160 dataset with 10 classes for 5 epochs...\n",
1311
- "\n",
1312
- " Epoch GPU_mem train_loss val_loss top1_acc top5_acc\n",
1313
- " 1/5 1.47G 1.05 0.974 0.828 0.975: 100% 148/148 [00:38<00:00, 3.82it/s]\n",
1314
- " 2/5 1.73G 0.895 0.766 0.911 0.994: 100% 148/148 [00:36<00:00, 4.03it/s]\n",
1315
- " 3/5 1.73G 0.82 0.704 0.934 0.996: 100% 148/148 [00:35<00:00, 4.20it/s]\n",
1316
- " 4/5 1.73G 0.766 0.664 0.951 0.998: 100% 148/148 [00:36<00:00, 4.05it/s]\n",
1317
- " 5/5 1.73G 0.724 0.634 0.959 0.997: 100% 148/148 [00:37<00:00, 3.94it/s]\n",
1318
- "\n",
1319
- "Training complete (0.052 hours)\n",
1320
- "Results saved to \u001b[1mruns/train-cls/exp\u001b[0m\n",
1321
- "Predict: python classify/predict.py --weights runs/train-cls/exp/weights/best.pt --source im.jpg\n",
1322
- "Validate: python classify/val.py --weights runs/train-cls/exp/weights/best.pt --data /content/datasets/imagenette160\n",
1323
- "Export: python export.py --weights runs/train-cls/exp/weights/best.pt --include onnx\n",
1324
- "PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'runs/train-cls/exp/weights/best.pt')\n",
1325
- "Visualize: https://netron.app\n",
1326
- "\n"
1327
- ]
1328
- }
1329
- ],
1330
- "source": [
1331
- "# Train YOLOv5s Classification on Imagenette160 for 3 epochs\n",
1332
- "!python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 --cache"
1333
- ]
1334
- },
1335
- {
1336
- "cell_type": "markdown",
1337
- "metadata": {
1338
- "id": "15glLzbQx5u0"
1339
- },
1340
- "source": [
1341
- "# 4. Visualize"
1342
- ]
1343
- },
1344
- {
1345
- "cell_type": "markdown",
1346
- "metadata": {
1347
- "id": "nWOsI5wJR1o3"
1348
- },
1349
- "source": [
1350
- "## Comet Logging and Visualization 🌟 NEW\n",
1351
- "\n",
1352
- "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
1353
- "\n",
1354
- "Getting started is easy:\n",
1355
- "```shell\n",
1356
- "pip install comet_ml # 1. install\n",
1357
- "export COMET_API_KEY=<Your API Key> # 2. paste API key\n",
1358
- "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n",
1359
- "```\n",
1360
- "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
1361
- "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
1362
- "\n",
1363
- "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
1364
- "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
1365
- ]
1366
- },
1367
- {
1368
- "cell_type": "markdown",
1369
- "metadata": {
1370
- "id": "Lay2WsTjNJzP"
1371
- },
1372
- "source": [
1373
- "## ClearML Logging and Automation 🌟 NEW\n",
1374
- "\n",
1375
- "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
1376
- "\n",
1377
- "- `pip install clearml`\n",
1378
- "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
1379
- "\n",
1380
- "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
1381
- "\n",
1382
- "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
1383
- "\n",
1384
- "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
1385
- "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
1386
- ]
1387
- },
1388
- {
1389
- "cell_type": "markdown",
1390
- "metadata": {
1391
- "id": "-WPvRbS5Swl6"
1392
- },
1393
- "source": [
1394
- "## Local Logging\n",
1395
- "\n",
1396
- "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
1397
- "\n",
1398
- "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
1399
- "\n",
1400
- "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
1401
- ]
1402
- },
1403
- {
1404
- "cell_type": "markdown",
1405
- "metadata": {
1406
- "id": "Zelyeqbyt3GD"
1407
- },
1408
- "source": [
1409
- "# Environments\n",
1410
- "\n",
1411
- "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
1412
- "\n",
1413
- "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
1414
- "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
1415
- "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
1416
- "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
1417
- ]
1418
- },
1419
- {
1420
- "cell_type": "markdown",
1421
- "metadata": {
1422
- "id": "6Qu7Iesl0p54"
1423
- },
1424
- "source": [
1425
- "# Status\n",
1426
- "\n",
1427
- "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
1428
- "\n",
1429
- "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
1430
- ]
1431
- },
1432
- {
1433
- "cell_type": "markdown",
1434
- "metadata": {
1435
- "id": "IEijrePND_2I"
1436
- },
1437
- "source": [
1438
- "# Appendix\n",
1439
- "\n",
1440
- "Additional content below."
1441
- ]
1442
- },
1443
- {
1444
- "cell_type": "code",
1445
- "execution_count": null,
1446
- "metadata": {
1447
- "id": "GMusP4OAxFu6"
1448
- },
1449
- "outputs": [],
1450
- "source": [
1451
- "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
1452
- "\n",
1453
- "model = torch.hub.load(\n",
1454
- " \"ultralytics/yolov5\", \"yolov5s\", force_reload=True, trust_repo=True\n",
1455
- ") # or yolov5n - yolov5x6 or custom\n",
1456
- "im = \"https://ultralytics.com/images/zidane.jpg\" # file, Path, PIL.Image, OpenCV, nparray, list\n",
1457
- "results = model(im) # inference\n",
1458
- "results.print() # or .show(), .save(), .crop(), .pandas(), etc."
1459
- ]
1460
- }
1461
- ],
1462
- "metadata": {
1463
- "accelerator": "GPU",
1464
- "colab": {
1465
- "name": "YOLOv5 Classification Tutorial",
1466
- "provenance": []
1467
- },
1468
- "kernelspec": {
1469
- "display_name": "Python 3 (ipykernel)",
1470
- "language": "python",
1471
- "name": "python3"
1472
- },
1473
- "language_info": {
1474
- "codemirror_mode": {
1475
- "name": "ipython",
1476
- "version": 3
1477
- },
1478
- "file_extension": ".py",
1479
- "mimetype": "text/x-python",
1480
- "name": "python",
1481
- "nbconvert_exporter": "python",
1482
- "pygments_lexer": "ipython3",
1483
- "version": "3.7.12"
1484
- }
1485
- },
1486
- "nbformat": 4,
1487
- "nbformat_minor": 0
1488
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/classify/val.py DELETED
@@ -1,178 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
- """
3
- Validate a trained YOLOv5 classification model on a classification dataset.
4
-
5
- Usage:
6
- $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
7
- $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
8
-
9
- Usage - formats:
10
- $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
11
- yolov5s-cls.torchscript # TorchScript
12
- yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
13
- yolov5s-cls_openvino_model # OpenVINO
14
- yolov5s-cls.engine # TensorRT
15
- yolov5s-cls.mlmodel # CoreML (macOS-only)
16
- yolov5s-cls_saved_model # TensorFlow SavedModel
17
- yolov5s-cls.pb # TensorFlow GraphDef
18
- yolov5s-cls.tflite # TensorFlow Lite
19
- yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
20
- yolov5s-cls_paddle_model # PaddlePaddle
21
- """
22
-
23
- import argparse
24
- import os
25
- import sys
26
- from pathlib import Path
27
-
28
- import torch
29
- from tqdm import tqdm
30
-
31
- FILE = Path(__file__).resolve()
32
- ROOT = FILE.parents[1] # YOLOv5 root directory
33
- if str(ROOT) not in sys.path:
34
- sys.path.append(str(ROOT)) # add ROOT to PATH
35
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
36
-
37
- from models.common import DetectMultiBackend
38
- from utils.dataloaders import create_classification_dataloader
39
- from utils.general import (
40
- LOGGER,
41
- TQDM_BAR_FORMAT,
42
- Profile,
43
- check_img_size,
44
- check_requirements,
45
- colorstr,
46
- increment_path,
47
- print_args,
48
- )
49
- from utils.torch_utils import select_device, smart_inference_mode
50
-
51
-
52
- @smart_inference_mode()
53
- def run(
54
- data=ROOT / "../datasets/mnist", # dataset dir
55
- weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
56
- batch_size=128, # batch size
57
- imgsz=224, # inference size (pixels)
58
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
59
- workers=8, # max dataloader workers (per RANK in DDP mode)
60
- verbose=False, # verbose output
61
- project=ROOT / "runs/val-cls", # save to project/name
62
- name="exp", # save to project/name
63
- exist_ok=False, # existing project/name ok, do not increment
64
- half=False, # use FP16 half-precision inference
65
- dnn=False, # use OpenCV DNN for ONNX inference
66
- model=None,
67
- dataloader=None,
68
- criterion=None,
69
- pbar=None,
70
- ):
71
- """Validates a YOLOv5 classification model on a dataset, computing metrics like top1 and top5 accuracy."""
72
- # Initialize/load model and set device
73
- training = model is not None
74
- if training: # called by train.py
75
- device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
76
- half &= device.type != "cpu" # half precision only supported on CUDA
77
- model.half() if half else model.float()
78
- else: # called directly
79
- device = select_device(device, batch_size=batch_size)
80
-
81
- # Directories
82
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
83
- save_dir.mkdir(parents=True, exist_ok=True) # make dir
84
-
85
- # Load model
86
- model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
87
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
88
- imgsz = check_img_size(imgsz, s=stride) # check image size
89
- half = model.fp16 # FP16 supported on limited backends with CUDA
90
- if engine:
91
- batch_size = model.batch_size
92
- else:
93
- device = model.device
94
- if not (pt or jit):
95
- batch_size = 1 # export.py models default to batch-size 1
96
- LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
97
-
98
- # Dataloader
99
- data = Path(data)
100
- test_dir = data / "test" if (data / "test").exists() else data / "val" # data/test or data/val
101
- dataloader = create_classification_dataloader(
102
- path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers
103
- )
104
-
105
- model.eval()
106
- pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device))
107
- n = len(dataloader) # number of batches
108
- action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
109
- desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
110
- bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
111
- with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
112
- for images, labels in bar:
113
- with dt[0]:
114
- images, labels = images.to(device, non_blocking=True), labels.to(device)
115
-
116
- with dt[1]:
117
- y = model(images)
118
-
119
- with dt[2]:
120
- pred.append(y.argsort(1, descending=True)[:, :5])
121
- targets.append(labels)
122
- if criterion:
123
- loss += criterion(y, labels)
124
-
125
- loss /= n
126
- pred, targets = torch.cat(pred), torch.cat(targets)
127
- correct = (targets[:, None] == pred).float()
128
- acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
129
- top1, top5 = acc.mean(0).tolist()
130
-
131
- if pbar:
132
- pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
133
- if verbose: # all classes
134
- LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
135
- LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
136
- for i, c in model.names.items():
137
- acc_i = acc[targets == i]
138
- top1i, top5i = acc_i.mean(0).tolist()
139
- LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
140
-
141
- # Print results
142
- t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) # speeds per image
143
- shape = (1, 3, imgsz, imgsz)
144
- LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t)
145
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
146
-
147
- return top1, top5, loss
148
-
149
-
150
- def parse_opt():
151
- """Parses and returns command line arguments for YOLOv5 model evaluation and inference settings."""
152
- parser = argparse.ArgumentParser()
153
- parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path")
154
- parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)")
155
- parser.add_argument("--batch-size", type=int, default=128, help="batch size")
156
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)")
157
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
158
- parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
159
- parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output")
160
- parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name")
161
- parser.add_argument("--name", default="exp", help="save to project/name")
162
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
163
- parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
164
- parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
165
- opt = parser.parse_args()
166
- print_args(vars(opt))
167
- return opt
168
-
169
-
170
- def main(opt):
171
- """Executes the YOLOv5 model prediction workflow, handling argument parsing and requirement checks."""
172
- check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
173
- run(**vars(opt))
174
-
175
-
176
- if __name__ == "__main__":
177
- opt = parse_opt()
178
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/Argoverse.yaml DELETED
@@ -1,73 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
4
- # Example usage: python train.py --data Argoverse.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── Argoverse ← downloads here (31.3 GB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/Argoverse # dataset root dir
12
- train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
- val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
- test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15
-
16
- # Classes
17
- names:
18
- 0: person
19
- 1: bicycle
20
- 2: car
21
- 3: motorcycle
22
- 4: bus
23
- 5: truck
24
- 6: traffic_light
25
- 7: stop_sign
26
-
27
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
28
- download: |
29
- import json
30
-
31
- from tqdm import tqdm
32
- from utils.general import download, Path
33
-
34
-
35
- def argoverse2yolo(set):
36
- labels = {}
37
- a = json.load(open(set, "rb"))
38
- for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
39
- img_id = annot['image_id']
40
- img_name = a['images'][img_id]['name']
41
- img_label_name = f'{img_name[:-3]}txt'
42
-
43
- cls = annot['category_id'] # instance class id
44
- x_center, y_center, width, height = annot['bbox']
45
- x_center = (x_center + width / 2) / 1920.0 # offset and scale
46
- y_center = (y_center + height / 2) / 1200.0 # offset and scale
47
- width /= 1920.0 # scale
48
- height /= 1200.0 # scale
49
-
50
- img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
51
- if not img_dir.exists():
52
- img_dir.mkdir(parents=True, exist_ok=True)
53
-
54
- k = str(img_dir / img_label_name)
55
- if k not in labels:
56
- labels[k] = []
57
- labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
58
-
59
- for k in labels:
60
- with open(k, "w") as f:
61
- f.writelines(labels[k])
62
-
63
-
64
- # Download
65
- dir = Path(yaml['path']) # dataset root dir
66
- urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
67
- download(urls, dir=dir, delete=False)
68
-
69
- # Convert
70
- annotations_dir = 'Argoverse-HD/annotations/'
71
- (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
72
- for d in "train.json", "val.json":
73
- argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/GlobalWheat2020.yaml DELETED
@@ -1,53 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
4
- # Example usage: python train.py --data GlobalWheat2020.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── GlobalWheat2020 ← downloads here (7.0 GB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/GlobalWheat2020 # dataset root dir
12
- train: # train images (relative to 'path') 3422 images
13
- - images/arvalis_1
14
- - images/arvalis_2
15
- - images/arvalis_3
16
- - images/ethz_1
17
- - images/rres_1
18
- - images/inrae_1
19
- - images/usask_1
20
- val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21
- - images/ethz_1
22
- test: # test images (optional) 1276 images
23
- - images/utokyo_1
24
- - images/utokyo_2
25
- - images/nau_1
26
- - images/uq_1
27
-
28
- # Classes
29
- names:
30
- 0: wheat_head
31
-
32
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
33
- download: |
34
- from utils.general import download, Path
35
-
36
-
37
- # Download
38
- dir = Path(yaml['path']) # dataset root dir
39
- urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
40
- 'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
41
- download(urls, dir=dir)
42
-
43
- # Make Directories
44
- for p in 'annotations', 'images', 'labels':
45
- (dir / p).mkdir(parents=True, exist_ok=True)
46
-
47
- # Move
48
- for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
49
- 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
50
- (dir / p).rename(dir / 'images' / p) # move to /images
51
- f = (dir / p).with_suffix('.json') # json file
52
- if f.exists():
53
- f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/ImageNet.yaml DELETED
@@ -1,1021 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
4
- # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
5
- # Example usage: python classify/train.py --data imagenet
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── imagenet ← downloads here (144 GB)
10
-
11
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/imagenet # dataset root dir
13
- train: train # train images (relative to 'path') 1281167 images
14
- val: val # val images (relative to 'path') 50000 images
15
- test: # test images (optional)
16
-
17
- # Classes
18
- names:
19
- 0: tench
20
- 1: goldfish
21
- 2: great white shark
22
- 3: tiger shark
23
- 4: hammerhead shark
24
- 5: electric ray
25
- 6: stingray
26
- 7: cock
27
- 8: hen
28
- 9: ostrich
29
- 10: brambling
30
- 11: goldfinch
31
- 12: house finch
32
- 13: junco
33
- 14: indigo bunting
34
- 15: American robin
35
- 16: bulbul
36
- 17: jay
37
- 18: magpie
38
- 19: chickadee
39
- 20: American dipper
40
- 21: kite
41
- 22: bald eagle
42
- 23: vulture
43
- 24: great grey owl
44
- 25: fire salamander
45
- 26: smooth newt
46
- 27: newt
47
- 28: spotted salamander
48
- 29: axolotl
49
- 30: American bullfrog
50
- 31: tree frog
51
- 32: tailed frog
52
- 33: loggerhead sea turtle
53
- 34: leatherback sea turtle
54
- 35: mud turtle
55
- 36: terrapin
56
- 37: box turtle
57
- 38: banded gecko
58
- 39: green iguana
59
- 40: Carolina anole
60
- 41: desert grassland whiptail lizard
61
- 42: agama
62
- 43: frilled-necked lizard
63
- 44: alligator lizard
64
- 45: Gila monster
65
- 46: European green lizard
66
- 47: chameleon
67
- 48: Komodo dragon
68
- 49: Nile crocodile
69
- 50: American alligator
70
- 51: triceratops
71
- 52: worm snake
72
- 53: ring-necked snake
73
- 54: eastern hog-nosed snake
74
- 55: smooth green snake
75
- 56: kingsnake
76
- 57: garter snake
77
- 58: water snake
78
- 59: vine snake
79
- 60: night snake
80
- 61: boa constrictor
81
- 62: African rock python
82
- 63: Indian cobra
83
- 64: green mamba
84
- 65: sea snake
85
- 66: Saharan horned viper
86
- 67: eastern diamondback rattlesnake
87
- 68: sidewinder
88
- 69: trilobite
89
- 70: harvestman
90
- 71: scorpion
91
- 72: yellow garden spider
92
- 73: barn spider
93
- 74: European garden spider
94
- 75: southern black widow
95
- 76: tarantula
96
- 77: wolf spider
97
- 78: tick
98
- 79: centipede
99
- 80: black grouse
100
- 81: ptarmigan
101
- 82: ruffed grouse
102
- 83: prairie grouse
103
- 84: peacock
104
- 85: quail
105
- 86: partridge
106
- 87: grey parrot
107
- 88: macaw
108
- 89: sulphur-crested cockatoo
109
- 90: lorikeet
110
- 91: coucal
111
- 92: bee eater
112
- 93: hornbill
113
- 94: hummingbird
114
- 95: jacamar
115
- 96: toucan
116
- 97: duck
117
- 98: red-breasted merganser
118
- 99: goose
119
- 100: black swan
120
- 101: tusker
121
- 102: echidna
122
- 103: platypus
123
- 104: wallaby
124
- 105: koala
125
- 106: wombat
126
- 107: jellyfish
127
- 108: sea anemone
128
- 109: brain coral
129
- 110: flatworm
130
- 111: nematode
131
- 112: conch
132
- 113: snail
133
- 114: slug
134
- 115: sea slug
135
- 116: chiton
136
- 117: chambered nautilus
137
- 118: Dungeness crab
138
- 119: rock crab
139
- 120: fiddler crab
140
- 121: red king crab
141
- 122: American lobster
142
- 123: spiny lobster
143
- 124: crayfish
144
- 125: hermit crab
145
- 126: isopod
146
- 127: white stork
147
- 128: black stork
148
- 129: spoonbill
149
- 130: flamingo
150
- 131: little blue heron
151
- 132: great egret
152
- 133: bittern
153
- 134: crane (bird)
154
- 135: limpkin
155
- 136: common gallinule
156
- 137: American coot
157
- 138: bustard
158
- 139: ruddy turnstone
159
- 140: dunlin
160
- 141: common redshank
161
- 142: dowitcher
162
- 143: oystercatcher
163
- 144: pelican
164
- 145: king penguin
165
- 146: albatross
166
- 147: grey whale
167
- 148: killer whale
168
- 149: dugong
169
- 150: sea lion
170
- 151: Chihuahua
171
- 152: Japanese Chin
172
- 153: Maltese
173
- 154: Pekingese
174
- 155: Shih Tzu
175
- 156: King Charles Spaniel
176
- 157: Papillon
177
- 158: toy terrier
178
- 159: Rhodesian Ridgeback
179
- 160: Afghan Hound
180
- 161: Basset Hound
181
- 162: Beagle
182
- 163: Bloodhound
183
- 164: Bluetick Coonhound
184
- 165: Black and Tan Coonhound
185
- 166: Treeing Walker Coonhound
186
- 167: English foxhound
187
- 168: Redbone Coonhound
188
- 169: borzoi
189
- 170: Irish Wolfhound
190
- 171: Italian Greyhound
191
- 172: Whippet
192
- 173: Ibizan Hound
193
- 174: Norwegian Elkhound
194
- 175: Otterhound
195
- 176: Saluki
196
- 177: Scottish Deerhound
197
- 178: Weimaraner
198
- 179: Staffordshire Bull Terrier
199
- 180: American Staffordshire Terrier
200
- 181: Bedlington Terrier
201
- 182: Border Terrier
202
- 183: Kerry Blue Terrier
203
- 184: Irish Terrier
204
- 185: Norfolk Terrier
205
- 186: Norwich Terrier
206
- 187: Yorkshire Terrier
207
- 188: Wire Fox Terrier
208
- 189: Lakeland Terrier
209
- 190: Sealyham Terrier
210
- 191: Airedale Terrier
211
- 192: Cairn Terrier
212
- 193: Australian Terrier
213
- 194: Dandie Dinmont Terrier
214
- 195: Boston Terrier
215
- 196: Miniature Schnauzer
216
- 197: Giant Schnauzer
217
- 198: Standard Schnauzer
218
- 199: Scottish Terrier
219
- 200: Tibetan Terrier
220
- 201: Australian Silky Terrier
221
- 202: Soft-coated Wheaten Terrier
222
- 203: West Highland White Terrier
223
- 204: Lhasa Apso
224
- 205: Flat-Coated Retriever
225
- 206: Curly-coated Retriever
226
- 207: Golden Retriever
227
- 208: Labrador Retriever
228
- 209: Chesapeake Bay Retriever
229
- 210: German Shorthaired Pointer
230
- 211: Vizsla
231
- 212: English Setter
232
- 213: Irish Setter
233
- 214: Gordon Setter
234
- 215: Brittany
235
- 216: Clumber Spaniel
236
- 217: English Springer Spaniel
237
- 218: Welsh Springer Spaniel
238
- 219: Cocker Spaniels
239
- 220: Sussex Spaniel
240
- 221: Irish Water Spaniel
241
- 222: Kuvasz
242
- 223: Schipperke
243
- 224: Groenendael
244
- 225: Malinois
245
- 226: Briard
246
- 227: Australian Kelpie
247
- 228: Komondor
248
- 229: Old English Sheepdog
249
- 230: Shetland Sheepdog
250
- 231: collie
251
- 232: Border Collie
252
- 233: Bouvier des Flandres
253
- 234: Rottweiler
254
- 235: German Shepherd Dog
255
- 236: Dobermann
256
- 237: Miniature Pinscher
257
- 238: Greater Swiss Mountain Dog
258
- 239: Bernese Mountain Dog
259
- 240: Appenzeller Sennenhund
260
- 241: Entlebucher Sennenhund
261
- 242: Boxer
262
- 243: Bullmastiff
263
- 244: Tibetan Mastiff
264
- 245: French Bulldog
265
- 246: Great Dane
266
- 247: St. Bernard
267
- 248: husky
268
- 249: Alaskan Malamute
269
- 250: Siberian Husky
270
- 251: Dalmatian
271
- 252: Affenpinscher
272
- 253: Basenji
273
- 254: pug
274
- 255: Leonberger
275
- 256: Newfoundland
276
- 257: Pyrenean Mountain Dog
277
- 258: Samoyed
278
- 259: Pomeranian
279
- 260: Chow Chow
280
- 261: Keeshond
281
- 262: Griffon Bruxellois
282
- 263: Pembroke Welsh Corgi
283
- 264: Cardigan Welsh Corgi
284
- 265: Toy Poodle
285
- 266: Miniature Poodle
286
- 267: Standard Poodle
287
- 268: Mexican hairless dog
288
- 269: grey wolf
289
- 270: Alaskan tundra wolf
290
- 271: red wolf
291
- 272: coyote
292
- 273: dingo
293
- 274: dhole
294
- 275: African wild dog
295
- 276: hyena
296
- 277: red fox
297
- 278: kit fox
298
- 279: Arctic fox
299
- 280: grey fox
300
- 281: tabby cat
301
- 282: tiger cat
302
- 283: Persian cat
303
- 284: Siamese cat
304
- 285: Egyptian Mau
305
- 286: cougar
306
- 287: lynx
307
- 288: leopard
308
- 289: snow leopard
309
- 290: jaguar
310
- 291: lion
311
- 292: tiger
312
- 293: cheetah
313
- 294: brown bear
314
- 295: American black bear
315
- 296: polar bear
316
- 297: sloth bear
317
- 298: mongoose
318
- 299: meerkat
319
- 300: tiger beetle
320
- 301: ladybug
321
- 302: ground beetle
322
- 303: longhorn beetle
323
- 304: leaf beetle
324
- 305: dung beetle
325
- 306: rhinoceros beetle
326
- 307: weevil
327
- 308: fly
328
- 309: bee
329
- 310: ant
330
- 311: grasshopper
331
- 312: cricket
332
- 313: stick insect
333
- 314: cockroach
334
- 315: mantis
335
- 316: cicada
336
- 317: leafhopper
337
- 318: lacewing
338
- 319: dragonfly
339
- 320: damselfly
340
- 321: red admiral
341
- 322: ringlet
342
- 323: monarch butterfly
343
- 324: small white
344
- 325: sulphur butterfly
345
- 326: gossamer-winged butterfly
346
- 327: starfish
347
- 328: sea urchin
348
- 329: sea cucumber
349
- 330: cottontail rabbit
350
- 331: hare
351
- 332: Angora rabbit
352
- 333: hamster
353
- 334: porcupine
354
- 335: fox squirrel
355
- 336: marmot
356
- 337: beaver
357
- 338: guinea pig
358
- 339: common sorrel
359
- 340: zebra
360
- 341: pig
361
- 342: wild boar
362
- 343: warthog
363
- 344: hippopotamus
364
- 345: ox
365
- 346: water buffalo
366
- 347: bison
367
- 348: ram
368
- 349: bighorn sheep
369
- 350: Alpine ibex
370
- 351: hartebeest
371
- 352: impala
372
- 353: gazelle
373
- 354: dromedary
374
- 355: llama
375
- 356: weasel
376
- 357: mink
377
- 358: European polecat
378
- 359: black-footed ferret
379
- 360: otter
380
- 361: skunk
381
- 362: badger
382
- 363: armadillo
383
- 364: three-toed sloth
384
- 365: orangutan
385
- 366: gorilla
386
- 367: chimpanzee
387
- 368: gibbon
388
- 369: siamang
389
- 370: guenon
390
- 371: patas monkey
391
- 372: baboon
392
- 373: macaque
393
- 374: langur
394
- 375: black-and-white colobus
395
- 376: proboscis monkey
396
- 377: marmoset
397
- 378: white-headed capuchin
398
- 379: howler monkey
399
- 380: titi
400
- 381: Geoffroy's spider monkey
401
- 382: common squirrel monkey
402
- 383: ring-tailed lemur
403
- 384: indri
404
- 385: Asian elephant
405
- 386: African bush elephant
406
- 387: red panda
407
- 388: giant panda
408
- 389: snoek
409
- 390: eel
410
- 391: coho salmon
411
- 392: rock beauty
412
- 393: clownfish
413
- 394: sturgeon
414
- 395: garfish
415
- 396: lionfish
416
- 397: pufferfish
417
- 398: abacus
418
- 399: abaya
419
- 400: academic gown
420
- 401: accordion
421
- 402: acoustic guitar
422
- 403: aircraft carrier
423
- 404: airliner
424
- 405: airship
425
- 406: altar
426
- 407: ambulance
427
- 408: amphibious vehicle
428
- 409: analog clock
429
- 410: apiary
430
- 411: apron
431
- 412: waste container
432
- 413: assault rifle
433
- 414: backpack
434
- 415: bakery
435
- 416: balance beam
436
- 417: balloon
437
- 418: ballpoint pen
438
- 419: Band-Aid
439
- 420: banjo
440
- 421: baluster
441
- 422: barbell
442
- 423: barber chair
443
- 424: barbershop
444
- 425: barn
445
- 426: barometer
446
- 427: barrel
447
- 428: wheelbarrow
448
- 429: baseball
449
- 430: basketball
450
- 431: bassinet
451
- 432: bassoon
452
- 433: swimming cap
453
- 434: bath towel
454
- 435: bathtub
455
- 436: station wagon
456
- 437: lighthouse
457
- 438: beaker
458
- 439: military cap
459
- 440: beer bottle
460
- 441: beer glass
461
- 442: bell-cot
462
- 443: bib
463
- 444: tandem bicycle
464
- 445: bikini
465
- 446: ring binder
466
- 447: binoculars
467
- 448: birdhouse
468
- 449: boathouse
469
- 450: bobsleigh
470
- 451: bolo tie
471
- 452: poke bonnet
472
- 453: bookcase
473
- 454: bookstore
474
- 455: bottle cap
475
- 456: bow
476
- 457: bow tie
477
- 458: brass
478
- 459: bra
479
- 460: breakwater
480
- 461: breastplate
481
- 462: broom
482
- 463: bucket
483
- 464: buckle
484
- 465: bulletproof vest
485
- 466: high-speed train
486
- 467: butcher shop
487
- 468: taxicab
488
- 469: cauldron
489
- 470: candle
490
- 471: cannon
491
- 472: canoe
492
- 473: can opener
493
- 474: cardigan
494
- 475: car mirror
495
- 476: carousel
496
- 477: tool kit
497
- 478: carton
498
- 479: car wheel
499
- 480: automated teller machine
500
- 481: cassette
501
- 482: cassette player
502
- 483: castle
503
- 484: catamaran
504
- 485: CD player
505
- 486: cello
506
- 487: mobile phone
507
- 488: chain
508
- 489: chain-link fence
509
- 490: chain mail
510
- 491: chainsaw
511
- 492: chest
512
- 493: chiffonier
513
- 494: chime
514
- 495: china cabinet
515
- 496: Christmas stocking
516
- 497: church
517
- 498: movie theater
518
- 499: cleaver
519
- 500: cliff dwelling
520
- 501: cloak
521
- 502: clogs
522
- 503: cocktail shaker
523
- 504: coffee mug
524
- 505: coffeemaker
525
- 506: coil
526
- 507: combination lock
527
- 508: computer keyboard
528
- 509: confectionery store
529
- 510: container ship
530
- 511: convertible
531
- 512: corkscrew
532
- 513: cornet
533
- 514: cowboy boot
534
- 515: cowboy hat
535
- 516: cradle
536
- 517: crane (machine)
537
- 518: crash helmet
538
- 519: crate
539
- 520: infant bed
540
- 521: Crock Pot
541
- 522: croquet ball
542
- 523: crutch
543
- 524: cuirass
544
- 525: dam
545
- 526: desk
546
- 527: desktop computer
547
- 528: rotary dial telephone
548
- 529: diaper
549
- 530: digital clock
550
- 531: digital watch
551
- 532: dining table
552
- 533: dishcloth
553
- 534: dishwasher
554
- 535: disc brake
555
- 536: dock
556
- 537: dog sled
557
- 538: dome
558
- 539: doormat
559
- 540: drilling rig
560
- 541: drum
561
- 542: drumstick
562
- 543: dumbbell
563
- 544: Dutch oven
564
- 545: electric fan
565
- 546: electric guitar
566
- 547: electric locomotive
567
- 548: entertainment center
568
- 549: envelope
569
- 550: espresso machine
570
- 551: face powder
571
- 552: feather boa
572
- 553: filing cabinet
573
- 554: fireboat
574
- 555: fire engine
575
- 556: fire screen sheet
576
- 557: flagpole
577
- 558: flute
578
- 559: folding chair
579
- 560: football helmet
580
- 561: forklift
581
- 562: fountain
582
- 563: fountain pen
583
- 564: four-poster bed
584
- 565: freight car
585
- 566: French horn
586
- 567: frying pan
587
- 568: fur coat
588
- 569: garbage truck
589
- 570: gas mask
590
- 571: gas pump
591
- 572: goblet
592
- 573: go-kart
593
- 574: golf ball
594
- 575: golf cart
595
- 576: gondola
596
- 577: gong
597
- 578: gown
598
- 579: grand piano
599
- 580: greenhouse
600
- 581: grille
601
- 582: grocery store
602
- 583: guillotine
603
- 584: barrette
604
- 585: hair spray
605
- 586: half-track
606
- 587: hammer
607
- 588: hamper
608
- 589: hair dryer
609
- 590: hand-held computer
610
- 591: handkerchief
611
- 592: hard disk drive
612
- 593: harmonica
613
- 594: harp
614
- 595: harvester
615
- 596: hatchet
616
- 597: holster
617
- 598: home theater
618
- 599: honeycomb
619
- 600: hook
620
- 601: hoop skirt
621
- 602: horizontal bar
622
- 603: horse-drawn vehicle
623
- 604: hourglass
624
- 605: iPod
625
- 606: clothes iron
626
- 607: jack-o'-lantern
627
- 608: jeans
628
- 609: jeep
629
- 610: T-shirt
630
- 611: jigsaw puzzle
631
- 612: pulled rickshaw
632
- 613: joystick
633
- 614: kimono
634
- 615: knee pad
635
- 616: knot
636
- 617: lab coat
637
- 618: ladle
638
- 619: lampshade
639
- 620: laptop computer
640
- 621: lawn mower
641
- 622: lens cap
642
- 623: paper knife
643
- 624: library
644
- 625: lifeboat
645
- 626: lighter
646
- 627: limousine
647
- 628: ocean liner
648
- 629: lipstick
649
- 630: slip-on shoe
650
- 631: lotion
651
- 632: speaker
652
- 633: loupe
653
- 634: sawmill
654
- 635: magnetic compass
655
- 636: mail bag
656
- 637: mailbox
657
- 638: tights
658
- 639: tank suit
659
- 640: manhole cover
660
- 641: maraca
661
- 642: marimba
662
- 643: mask
663
- 644: match
664
- 645: maypole
665
- 646: maze
666
- 647: measuring cup
667
- 648: medicine chest
668
- 649: megalith
669
- 650: microphone
670
- 651: microwave oven
671
- 652: military uniform
672
- 653: milk can
673
- 654: minibus
674
- 655: miniskirt
675
- 656: minivan
676
- 657: missile
677
- 658: mitten
678
- 659: mixing bowl
679
- 660: mobile home
680
- 661: Model T
681
- 662: modem
682
- 663: monastery
683
- 664: monitor
684
- 665: moped
685
- 666: mortar
686
- 667: square academic cap
687
- 668: mosque
688
- 669: mosquito net
689
- 670: scooter
690
- 671: mountain bike
691
- 672: tent
692
- 673: computer mouse
693
- 674: mousetrap
694
- 675: moving van
695
- 676: muzzle
696
- 677: nail
697
- 678: neck brace
698
- 679: necklace
699
- 680: nipple
700
- 681: notebook computer
701
- 682: obelisk
702
- 683: oboe
703
- 684: ocarina
704
- 685: odometer
705
- 686: oil filter
706
- 687: organ
707
- 688: oscilloscope
708
- 689: overskirt
709
- 690: bullock cart
710
- 691: oxygen mask
711
- 692: packet
712
- 693: paddle
713
- 694: paddle wheel
714
- 695: padlock
715
- 696: paintbrush
716
- 697: pajamas
717
- 698: palace
718
- 699: pan flute
719
- 700: paper towel
720
- 701: parachute
721
- 702: parallel bars
722
- 703: park bench
723
- 704: parking meter
724
- 705: passenger car
725
- 706: patio
726
- 707: payphone
727
- 708: pedestal
728
- 709: pencil case
729
- 710: pencil sharpener
730
- 711: perfume
731
- 712: Petri dish
732
- 713: photocopier
733
- 714: plectrum
734
- 715: Pickelhaube
735
- 716: picket fence
736
- 717: pickup truck
737
- 718: pier
738
- 719: piggy bank
739
- 720: pill bottle
740
- 721: pillow
741
- 722: ping-pong ball
742
- 723: pinwheel
743
- 724: pirate ship
744
- 725: pitcher
745
- 726: hand plane
746
- 727: planetarium
747
- 728: plastic bag
748
- 729: plate rack
749
- 730: plow
750
- 731: plunger
751
- 732: Polaroid camera
752
- 733: pole
753
- 734: police van
754
- 735: poncho
755
- 736: billiard table
756
- 737: soda bottle
757
- 738: pot
758
- 739: potter's wheel
759
- 740: power drill
760
- 741: prayer rug
761
- 742: printer
762
- 743: prison
763
- 744: projectile
764
- 745: projector
765
- 746: hockey puck
766
- 747: punching bag
767
- 748: purse
768
- 749: quill
769
- 750: quilt
770
- 751: race car
771
- 752: racket
772
- 753: radiator
773
- 754: radio
774
- 755: radio telescope
775
- 756: rain barrel
776
- 757: recreational vehicle
777
- 758: reel
778
- 759: reflex camera
779
- 760: refrigerator
780
- 761: remote control
781
- 762: restaurant
782
- 763: revolver
783
- 764: rifle
784
- 765: rocking chair
785
- 766: rotisserie
786
- 767: eraser
787
- 768: rugby ball
788
- 769: ruler
789
- 770: running shoe
790
- 771: safe
791
- 772: safety pin
792
- 773: salt shaker
793
- 774: sandal
794
- 775: sarong
795
- 776: saxophone
796
- 777: scabbard
797
- 778: weighing scale
798
- 779: school bus
799
- 780: schooner
800
- 781: scoreboard
801
- 782: CRT screen
802
- 783: screw
803
- 784: screwdriver
804
- 785: seat belt
805
- 786: sewing machine
806
- 787: shield
807
- 788: shoe store
808
- 789: shoji
809
- 790: shopping basket
810
- 791: shopping cart
811
- 792: shovel
812
- 793: shower cap
813
- 794: shower curtain
814
- 795: ski
815
- 796: ski mask
816
- 797: sleeping bag
817
- 798: slide rule
818
- 799: sliding door
819
- 800: slot machine
820
- 801: snorkel
821
- 802: snowmobile
822
- 803: snowplow
823
- 804: soap dispenser
824
- 805: soccer ball
825
- 806: sock
826
- 807: solar thermal collector
827
- 808: sombrero
828
- 809: soup bowl
829
- 810: space bar
830
- 811: space heater
831
- 812: space shuttle
832
- 813: spatula
833
- 814: motorboat
834
- 815: spider web
835
- 816: spindle
836
- 817: sports car
837
- 818: spotlight
838
- 819: stage
839
- 820: steam locomotive
840
- 821: through arch bridge
841
- 822: steel drum
842
- 823: stethoscope
843
- 824: scarf
844
- 825: stone wall
845
- 826: stopwatch
846
- 827: stove
847
- 828: strainer
848
- 829: tram
849
- 830: stretcher
850
- 831: couch
851
- 832: stupa
852
- 833: submarine
853
- 834: suit
854
- 835: sundial
855
- 836: sunglass
856
- 837: sunglasses
857
- 838: sunscreen
858
- 839: suspension bridge
859
- 840: mop
860
- 841: sweatshirt
861
- 842: swimsuit
862
- 843: swing
863
- 844: switch
864
- 845: syringe
865
- 846: table lamp
866
- 847: tank
867
- 848: tape player
868
- 849: teapot
869
- 850: teddy bear
870
- 851: television
871
- 852: tennis ball
872
- 853: thatched roof
873
- 854: front curtain
874
- 855: thimble
875
- 856: threshing machine
876
- 857: throne
877
- 858: tile roof
878
- 859: toaster
879
- 860: tobacco shop
880
- 861: toilet seat
881
- 862: torch
882
- 863: totem pole
883
- 864: tow truck
884
- 865: toy store
885
- 866: tractor
886
- 867: semi-trailer truck
887
- 868: tray
888
- 869: trench coat
889
- 870: tricycle
890
- 871: trimaran
891
- 872: tripod
892
- 873: triumphal arch
893
- 874: trolleybus
894
- 875: trombone
895
- 876: tub
896
- 877: turnstile
897
- 878: typewriter keyboard
898
- 879: umbrella
899
- 880: unicycle
900
- 881: upright piano
901
- 882: vacuum cleaner
902
- 883: vase
903
- 884: vault
904
- 885: velvet
905
- 886: vending machine
906
- 887: vestment
907
- 888: viaduct
908
- 889: violin
909
- 890: volleyball
910
- 891: waffle iron
911
- 892: wall clock
912
- 893: wallet
913
- 894: wardrobe
914
- 895: military aircraft
915
- 896: sink
916
- 897: washing machine
917
- 898: water bottle
918
- 899: water jug
919
- 900: water tower
920
- 901: whiskey jug
921
- 902: whistle
922
- 903: wig
923
- 904: window screen
924
- 905: window shade
925
- 906: Windsor tie
926
- 907: wine bottle
927
- 908: wing
928
- 909: wok
929
- 910: wooden spoon
930
- 911: wool
931
- 912: split-rail fence
932
- 913: shipwreck
933
- 914: yawl
934
- 915: yurt
935
- 916: website
936
- 917: comic book
937
- 918: crossword
938
- 919: traffic sign
939
- 920: traffic light
940
- 921: dust jacket
941
- 922: menu
942
- 923: plate
943
- 924: guacamole
944
- 925: consomme
945
- 926: hot pot
946
- 927: trifle
947
- 928: ice cream
948
- 929: ice pop
949
- 930: baguette
950
- 931: bagel
951
- 932: pretzel
952
- 933: cheeseburger
953
- 934: hot dog
954
- 935: mashed potato
955
- 936: cabbage
956
- 937: broccoli
957
- 938: cauliflower
958
- 939: zucchini
959
- 940: spaghetti squash
960
- 941: acorn squash
961
- 942: butternut squash
962
- 943: cucumber
963
- 944: artichoke
964
- 945: bell pepper
965
- 946: cardoon
966
- 947: mushroom
967
- 948: Granny Smith
968
- 949: strawberry
969
- 950: orange
970
- 951: lemon
971
- 952: fig
972
- 953: pineapple
973
- 954: banana
974
- 955: jackfruit
975
- 956: custard apple
976
- 957: pomegranate
977
- 958: hay
978
- 959: carbonara
979
- 960: chocolate syrup
980
- 961: dough
981
- 962: meatloaf
982
- 963: pizza
983
- 964: pot pie
984
- 965: burrito
985
- 966: red wine
986
- 967: espresso
987
- 968: cup
988
- 969: eggnog
989
- 970: alp
990
- 971: bubble
991
- 972: cliff
992
- 973: coral reef
993
- 974: geyser
994
- 975: lakeshore
995
- 976: promontory
996
- 977: shoal
997
- 978: seashore
998
- 979: valley
999
- 980: volcano
1000
- 981: baseball player
1001
- 982: bridegroom
1002
- 983: scuba diver
1003
- 984: rapeseed
1004
- 985: daisy
1005
- 986: yellow lady's slipper
1006
- 987: corn
1007
- 988: acorn
1008
- 989: rose hip
1009
- 990: horse chestnut seed
1010
- 991: coral fungus
1011
- 992: agaric
1012
- 993: gyromitra
1013
- 994: stinkhorn mushroom
1014
- 995: earth star
1015
- 996: hen-of-the-woods
1016
- 997: bolete
1017
- 998: ear
1018
- 999: toilet paper
1019
-
1020
- # Download script/URL (optional)
1021
- download: data/scripts/get_imagenet.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/ImageNet10.yaml DELETED
@@ -1,31 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
4
- # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
5
- # Example usage: python classify/train.py --data imagenet
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── imagenet10 ← downloads here
10
-
11
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/imagenet10 # dataset root dir
13
- train: train # train images (relative to 'path') 1281167 images
14
- val: val # val images (relative to 'path') 50000 images
15
- test: # test images (optional)
16
-
17
- # Classes
18
- names:
19
- 0: tench
20
- 1: goldfish
21
- 2: great white shark
22
- 3: tiger shark
23
- 4: hammerhead shark
24
- 5: electric ray
25
- 6: stingray
26
- 7: cock
27
- 8: hen
28
- 9: ostrich
29
-
30
- # Download script/URL (optional)
31
- download: data/scripts/get_imagenet10.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/ImageNet100.yaml DELETED
@@ -1,120 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
4
- # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
5
- # Example usage: python classify/train.py --data imagenet
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── imagenet100 ← downloads here
10
-
11
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/imagenet100 # dataset root dir
13
- train: train # train images (relative to 'path') 1281167 images
14
- val: val # val images (relative to 'path') 50000 images
15
- test: # test images (optional)
16
-
17
- # Classes
18
- names:
19
- 0: tench
20
- 1: goldfish
21
- 2: great white shark
22
- 3: tiger shark
23
- 4: hammerhead shark
24
- 5: electric ray
25
- 6: stingray
26
- 7: cock
27
- 8: hen
28
- 9: ostrich
29
- 10: brambling
30
- 11: goldfinch
31
- 12: house finch
32
- 13: junco
33
- 14: indigo bunting
34
- 15: American robin
35
- 16: bulbul
36
- 17: jay
37
- 18: magpie
38
- 19: chickadee
39
- 20: American dipper
40
- 21: kite
41
- 22: bald eagle
42
- 23: vulture
43
- 24: great grey owl
44
- 25: fire salamander
45
- 26: smooth newt
46
- 27: newt
47
- 28: spotted salamander
48
- 29: axolotl
49
- 30: American bullfrog
50
- 31: tree frog
51
- 32: tailed frog
52
- 33: loggerhead sea turtle
53
- 34: leatherback sea turtle
54
- 35: mud turtle
55
- 36: terrapin
56
- 37: box turtle
57
- 38: banded gecko
58
- 39: green iguana
59
- 40: Carolina anole
60
- 41: desert grassland whiptail lizard
61
- 42: agama
62
- 43: frilled-necked lizard
63
- 44: alligator lizard
64
- 45: Gila monster
65
- 46: European green lizard
66
- 47: chameleon
67
- 48: Komodo dragon
68
- 49: Nile crocodile
69
- 50: American alligator
70
- 51: triceratops
71
- 52: worm snake
72
- 53: ring-necked snake
73
- 54: eastern hog-nosed snake
74
- 55: smooth green snake
75
- 56: kingsnake
76
- 57: garter snake
77
- 58: water snake
78
- 59: vine snake
79
- 60: night snake
80
- 61: boa constrictor
81
- 62: African rock python
82
- 63: Indian cobra
83
- 64: green mamba
84
- 65: sea snake
85
- 66: Saharan horned viper
86
- 67: eastern diamondback rattlesnake
87
- 68: sidewinder
88
- 69: trilobite
89
- 70: harvestman
90
- 71: scorpion
91
- 72: yellow garden spider
92
- 73: barn spider
93
- 74: European garden spider
94
- 75: southern black widow
95
- 76: tarantula
96
- 77: wolf spider
97
- 78: tick
98
- 79: centipede
99
- 80: black grouse
100
- 81: ptarmigan
101
- 82: ruffed grouse
102
- 83: prairie grouse
103
- 84: peacock
104
- 85: quail
105
- 86: partridge
106
- 87: grey parrot
107
- 88: macaw
108
- 89: sulphur-crested cockatoo
109
- 90: lorikeet
110
- 91: coucal
111
- 92: bee eater
112
- 93: hornbill
113
- 94: hummingbird
114
- 95: jacamar
115
- 96: toucan
116
- 97: duck
117
- 98: red-breasted merganser
118
- 99: goose
119
- # Download script/URL (optional)
120
- download: data/scripts/get_imagenet100.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/ImageNet1000.yaml DELETED
@@ -1,1021 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
4
- # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
5
- # Example usage: python classify/train.py --data imagenet
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── imagenet100 ← downloads here
10
-
11
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/imagenet1000 # dataset root dir
13
- train: train # train images (relative to 'path') 1281167 images
14
- val: val # val images (relative to 'path') 50000 images
15
- test: # test images (optional)
16
-
17
- # Classes
18
- names:
19
- 0: tench
20
- 1: goldfish
21
- 2: great white shark
22
- 3: tiger shark
23
- 4: hammerhead shark
24
- 5: electric ray
25
- 6: stingray
26
- 7: cock
27
- 8: hen
28
- 9: ostrich
29
- 10: brambling
30
- 11: goldfinch
31
- 12: house finch
32
- 13: junco
33
- 14: indigo bunting
34
- 15: American robin
35
- 16: bulbul
36
- 17: jay
37
- 18: magpie
38
- 19: chickadee
39
- 20: American dipper
40
- 21: kite
41
- 22: bald eagle
42
- 23: vulture
43
- 24: great grey owl
44
- 25: fire salamander
45
- 26: smooth newt
46
- 27: newt
47
- 28: spotted salamander
48
- 29: axolotl
49
- 30: American bullfrog
50
- 31: tree frog
51
- 32: tailed frog
52
- 33: loggerhead sea turtle
53
- 34: leatherback sea turtle
54
- 35: mud turtle
55
- 36: terrapin
56
- 37: box turtle
57
- 38: banded gecko
58
- 39: green iguana
59
- 40: Carolina anole
60
- 41: desert grassland whiptail lizard
61
- 42: agama
62
- 43: frilled-necked lizard
63
- 44: alligator lizard
64
- 45: Gila monster
65
- 46: European green lizard
66
- 47: chameleon
67
- 48: Komodo dragon
68
- 49: Nile crocodile
69
- 50: American alligator
70
- 51: triceratops
71
- 52: worm snake
72
- 53: ring-necked snake
73
- 54: eastern hog-nosed snake
74
- 55: smooth green snake
75
- 56: kingsnake
76
- 57: garter snake
77
- 58: water snake
78
- 59: vine snake
79
- 60: night snake
80
- 61: boa constrictor
81
- 62: African rock python
82
- 63: Indian cobra
83
- 64: green mamba
84
- 65: sea snake
85
- 66: Saharan horned viper
86
- 67: eastern diamondback rattlesnake
87
- 68: sidewinder
88
- 69: trilobite
89
- 70: harvestman
90
- 71: scorpion
91
- 72: yellow garden spider
92
- 73: barn spider
93
- 74: European garden spider
94
- 75: southern black widow
95
- 76: tarantula
96
- 77: wolf spider
97
- 78: tick
98
- 79: centipede
99
- 80: black grouse
100
- 81: ptarmigan
101
- 82: ruffed grouse
102
- 83: prairie grouse
103
- 84: peacock
104
- 85: quail
105
- 86: partridge
106
- 87: grey parrot
107
- 88: macaw
108
- 89: sulphur-crested cockatoo
109
- 90: lorikeet
110
- 91: coucal
111
- 92: bee eater
112
- 93: hornbill
113
- 94: hummingbird
114
- 95: jacamar
115
- 96: toucan
116
- 97: duck
117
- 98: red-breasted merganser
118
- 99: goose
119
- 100: black swan
120
- 101: tusker
121
- 102: echidna
122
- 103: platypus
123
- 104: wallaby
124
- 105: koala
125
- 106: wombat
126
- 107: jellyfish
127
- 108: sea anemone
128
- 109: brain coral
129
- 110: flatworm
130
- 111: nematode
131
- 112: conch
132
- 113: snail
133
- 114: slug
134
- 115: sea slug
135
- 116: chiton
136
- 117: chambered nautilus
137
- 118: Dungeness crab
138
- 119: rock crab
139
- 120: fiddler crab
140
- 121: red king crab
141
- 122: American lobster
142
- 123: spiny lobster
143
- 124: crayfish
144
- 125: hermit crab
145
- 126: isopod
146
- 127: white stork
147
- 128: black stork
148
- 129: spoonbill
149
- 130: flamingo
150
- 131: little blue heron
151
- 132: great egret
152
- 133: bittern
153
- 134: crane (bird)
154
- 135: limpkin
155
- 136: common gallinule
156
- 137: American coot
157
- 138: bustard
158
- 139: ruddy turnstone
159
- 140: dunlin
160
- 141: common redshank
161
- 142: dowitcher
162
- 143: oystercatcher
163
- 144: pelican
164
- 145: king penguin
165
- 146: albatross
166
- 147: grey whale
167
- 148: killer whale
168
- 149: dugong
169
- 150: sea lion
170
- 151: Chihuahua
171
- 152: Japanese Chin
172
- 153: Maltese
173
- 154: Pekingese
174
- 155: Shih Tzu
175
- 156: King Charles Spaniel
176
- 157: Papillon
177
- 158: toy terrier
178
- 159: Rhodesian Ridgeback
179
- 160: Afghan Hound
180
- 161: Basset Hound
181
- 162: Beagle
182
- 163: Bloodhound
183
- 164: Bluetick Coonhound
184
- 165: Black and Tan Coonhound
185
- 166: Treeing Walker Coonhound
186
- 167: English foxhound
187
- 168: Redbone Coonhound
188
- 169: borzoi
189
- 170: Irish Wolfhound
190
- 171: Italian Greyhound
191
- 172: Whippet
192
- 173: Ibizan Hound
193
- 174: Norwegian Elkhound
194
- 175: Otterhound
195
- 176: Saluki
196
- 177: Scottish Deerhound
197
- 178: Weimaraner
198
- 179: Staffordshire Bull Terrier
199
- 180: American Staffordshire Terrier
200
- 181: Bedlington Terrier
201
- 182: Border Terrier
202
- 183: Kerry Blue Terrier
203
- 184: Irish Terrier
204
- 185: Norfolk Terrier
205
- 186: Norwich Terrier
206
- 187: Yorkshire Terrier
207
- 188: Wire Fox Terrier
208
- 189: Lakeland Terrier
209
- 190: Sealyham Terrier
210
- 191: Airedale Terrier
211
- 192: Cairn Terrier
212
- 193: Australian Terrier
213
- 194: Dandie Dinmont Terrier
214
- 195: Boston Terrier
215
- 196: Miniature Schnauzer
216
- 197: Giant Schnauzer
217
- 198: Standard Schnauzer
218
- 199: Scottish Terrier
219
- 200: Tibetan Terrier
220
- 201: Australian Silky Terrier
221
- 202: Soft-coated Wheaten Terrier
222
- 203: West Highland White Terrier
223
- 204: Lhasa Apso
224
- 205: Flat-Coated Retriever
225
- 206: Curly-coated Retriever
226
- 207: Golden Retriever
227
- 208: Labrador Retriever
228
- 209: Chesapeake Bay Retriever
229
- 210: German Shorthaired Pointer
230
- 211: Vizsla
231
- 212: English Setter
232
- 213: Irish Setter
233
- 214: Gordon Setter
234
- 215: Brittany
235
- 216: Clumber Spaniel
236
- 217: English Springer Spaniel
237
- 218: Welsh Springer Spaniel
238
- 219: Cocker Spaniels
239
- 220: Sussex Spaniel
240
- 221: Irish Water Spaniel
241
- 222: Kuvasz
242
- 223: Schipperke
243
- 224: Groenendael
244
- 225: Malinois
245
- 226: Briard
246
- 227: Australian Kelpie
247
- 228: Komondor
248
- 229: Old English Sheepdog
249
- 230: Shetland Sheepdog
250
- 231: collie
251
- 232: Border Collie
252
- 233: Bouvier des Flandres
253
- 234: Rottweiler
254
- 235: German Shepherd Dog
255
- 236: Dobermann
256
- 237: Miniature Pinscher
257
- 238: Greater Swiss Mountain Dog
258
- 239: Bernese Mountain Dog
259
- 240: Appenzeller Sennenhund
260
- 241: Entlebucher Sennenhund
261
- 242: Boxer
262
- 243: Bullmastiff
263
- 244: Tibetan Mastiff
264
- 245: French Bulldog
265
- 246: Great Dane
266
- 247: St. Bernard
267
- 248: husky
268
- 249: Alaskan Malamute
269
- 250: Siberian Husky
270
- 251: Dalmatian
271
- 252: Affenpinscher
272
- 253: Basenji
273
- 254: pug
274
- 255: Leonberger
275
- 256: Newfoundland
276
- 257: Pyrenean Mountain Dog
277
- 258: Samoyed
278
- 259: Pomeranian
279
- 260: Chow Chow
280
- 261: Keeshond
281
- 262: Griffon Bruxellois
282
- 263: Pembroke Welsh Corgi
283
- 264: Cardigan Welsh Corgi
284
- 265: Toy Poodle
285
- 266: Miniature Poodle
286
- 267: Standard Poodle
287
- 268: Mexican hairless dog
288
- 269: grey wolf
289
- 270: Alaskan tundra wolf
290
- 271: red wolf
291
- 272: coyote
292
- 273: dingo
293
- 274: dhole
294
- 275: African wild dog
295
- 276: hyena
296
- 277: red fox
297
- 278: kit fox
298
- 279: Arctic fox
299
- 280: grey fox
300
- 281: tabby cat
301
- 282: tiger cat
302
- 283: Persian cat
303
- 284: Siamese cat
304
- 285: Egyptian Mau
305
- 286: cougar
306
- 287: lynx
307
- 288: leopard
308
- 289: snow leopard
309
- 290: jaguar
310
- 291: lion
311
- 292: tiger
312
- 293: cheetah
313
- 294: brown bear
314
- 295: American black bear
315
- 296: polar bear
316
- 297: sloth bear
317
- 298: mongoose
318
- 299: meerkat
319
- 300: tiger beetle
320
- 301: ladybug
321
- 302: ground beetle
322
- 303: longhorn beetle
323
- 304: leaf beetle
324
- 305: dung beetle
325
- 306: rhinoceros beetle
326
- 307: weevil
327
- 308: fly
328
- 309: bee
329
- 310: ant
330
- 311: grasshopper
331
- 312: cricket
332
- 313: stick insect
333
- 314: cockroach
334
- 315: mantis
335
- 316: cicada
336
- 317: leafhopper
337
- 318: lacewing
338
- 319: dragonfly
339
- 320: damselfly
340
- 321: red admiral
341
- 322: ringlet
342
- 323: monarch butterfly
343
- 324: small white
344
- 325: sulphur butterfly
345
- 326: gossamer-winged butterfly
346
- 327: starfish
347
- 328: sea urchin
348
- 329: sea cucumber
349
- 330: cottontail rabbit
350
- 331: hare
351
- 332: Angora rabbit
352
- 333: hamster
353
- 334: porcupine
354
- 335: fox squirrel
355
- 336: marmot
356
- 337: beaver
357
- 338: guinea pig
358
- 339: common sorrel
359
- 340: zebra
360
- 341: pig
361
- 342: wild boar
362
- 343: warthog
363
- 344: hippopotamus
364
- 345: ox
365
- 346: water buffalo
366
- 347: bison
367
- 348: ram
368
- 349: bighorn sheep
369
- 350: Alpine ibex
370
- 351: hartebeest
371
- 352: impala
372
- 353: gazelle
373
- 354: dromedary
374
- 355: llama
375
- 356: weasel
376
- 357: mink
377
- 358: European polecat
378
- 359: black-footed ferret
379
- 360: otter
380
- 361: skunk
381
- 362: badger
382
- 363: armadillo
383
- 364: three-toed sloth
384
- 365: orangutan
385
- 366: gorilla
386
- 367: chimpanzee
387
- 368: gibbon
388
- 369: siamang
389
- 370: guenon
390
- 371: patas monkey
391
- 372: baboon
392
- 373: macaque
393
- 374: langur
394
- 375: black-and-white colobus
395
- 376: proboscis monkey
396
- 377: marmoset
397
- 378: white-headed capuchin
398
- 379: howler monkey
399
- 380: titi
400
- 381: Geoffroy's spider monkey
401
- 382: common squirrel monkey
402
- 383: ring-tailed lemur
403
- 384: indri
404
- 385: Asian elephant
405
- 386: African bush elephant
406
- 387: red panda
407
- 388: giant panda
408
- 389: snoek
409
- 390: eel
410
- 391: coho salmon
411
- 392: rock beauty
412
- 393: clownfish
413
- 394: sturgeon
414
- 395: garfish
415
- 396: lionfish
416
- 397: pufferfish
417
- 398: abacus
418
- 399: abaya
419
- 400: academic gown
420
- 401: accordion
421
- 402: acoustic guitar
422
- 403: aircraft carrier
423
- 404: airliner
424
- 405: airship
425
- 406: altar
426
- 407: ambulance
427
- 408: amphibious vehicle
428
- 409: analog clock
429
- 410: apiary
430
- 411: apron
431
- 412: waste container
432
- 413: assault rifle
433
- 414: backpack
434
- 415: bakery
435
- 416: balance beam
436
- 417: balloon
437
- 418: ballpoint pen
438
- 419: Band-Aid
439
- 420: banjo
440
- 421: baluster
441
- 422: barbell
442
- 423: barber chair
443
- 424: barbershop
444
- 425: barn
445
- 426: barometer
446
- 427: barrel
447
- 428: wheelbarrow
448
- 429: baseball
449
- 430: basketball
450
- 431: bassinet
451
- 432: bassoon
452
- 433: swimming cap
453
- 434: bath towel
454
- 435: bathtub
455
- 436: station wagon
456
- 437: lighthouse
457
- 438: beaker
458
- 439: military cap
459
- 440: beer bottle
460
- 441: beer glass
461
- 442: bell-cot
462
- 443: bib
463
- 444: tandem bicycle
464
- 445: bikini
465
- 446: ring binder
466
- 447: binoculars
467
- 448: birdhouse
468
- 449: boathouse
469
- 450: bobsleigh
470
- 451: bolo tie
471
- 452: poke bonnet
472
- 453: bookcase
473
- 454: bookstore
474
- 455: bottle cap
475
- 456: bow
476
- 457: bow tie
477
- 458: brass
478
- 459: bra
479
- 460: breakwater
480
- 461: breastplate
481
- 462: broom
482
- 463: bucket
483
- 464: buckle
484
- 465: bulletproof vest
485
- 466: high-speed train
486
- 467: butcher shop
487
- 468: taxicab
488
- 469: cauldron
489
- 470: candle
490
- 471: cannon
491
- 472: canoe
492
- 473: can opener
493
- 474: cardigan
494
- 475: car mirror
495
- 476: carousel
496
- 477: tool kit
497
- 478: carton
498
- 479: car wheel
499
- 480: automated teller machine
500
- 481: cassette
501
- 482: cassette player
502
- 483: castle
503
- 484: catamaran
504
- 485: CD player
505
- 486: cello
506
- 487: mobile phone
507
- 488: chain
508
- 489: chain-link fence
509
- 490: chain mail
510
- 491: chainsaw
511
- 492: chest
512
- 493: chiffonier
513
- 494: chime
514
- 495: china cabinet
515
- 496: Christmas stocking
516
- 497: church
517
- 498: movie theater
518
- 499: cleaver
519
- 500: cliff dwelling
520
- 501: cloak
521
- 502: clogs
522
- 503: cocktail shaker
523
- 504: coffee mug
524
- 505: coffeemaker
525
- 506: coil
526
- 507: combination lock
527
- 508: computer keyboard
528
- 509: confectionery store
529
- 510: container ship
530
- 511: convertible
531
- 512: corkscrew
532
- 513: cornet
533
- 514: cowboy boot
534
- 515: cowboy hat
535
- 516: cradle
536
- 517: crane (machine)
537
- 518: crash helmet
538
- 519: crate
539
- 520: infant bed
540
- 521: Crock Pot
541
- 522: croquet ball
542
- 523: crutch
543
- 524: cuirass
544
- 525: dam
545
- 526: desk
546
- 527: desktop computer
547
- 528: rotary dial telephone
548
- 529: diaper
549
- 530: digital clock
550
- 531: digital watch
551
- 532: dining table
552
- 533: dishcloth
553
- 534: dishwasher
554
- 535: disc brake
555
- 536: dock
556
- 537: dog sled
557
- 538: dome
558
- 539: doormat
559
- 540: drilling rig
560
- 541: drum
561
- 542: drumstick
562
- 543: dumbbell
563
- 544: Dutch oven
564
- 545: electric fan
565
- 546: electric guitar
566
- 547: electric locomotive
567
- 548: entertainment center
568
- 549: envelope
569
- 550: espresso machine
570
- 551: face powder
571
- 552: feather boa
572
- 553: filing cabinet
573
- 554: fireboat
574
- 555: fire engine
575
- 556: fire screen sheet
576
- 557: flagpole
577
- 558: flute
578
- 559: folding chair
579
- 560: football helmet
580
- 561: forklift
581
- 562: fountain
582
- 563: fountain pen
583
- 564: four-poster bed
584
- 565: freight car
585
- 566: French horn
586
- 567: frying pan
587
- 568: fur coat
588
- 569: garbage truck
589
- 570: gas mask
590
- 571: gas pump
591
- 572: goblet
592
- 573: go-kart
593
- 574: golf ball
594
- 575: golf cart
595
- 576: gondola
596
- 577: gong
597
- 578: gown
598
- 579: grand piano
599
- 580: greenhouse
600
- 581: grille
601
- 582: grocery store
602
- 583: guillotine
603
- 584: barrette
604
- 585: hair spray
605
- 586: half-track
606
- 587: hammer
607
- 588: hamper
608
- 589: hair dryer
609
- 590: hand-held computer
610
- 591: handkerchief
611
- 592: hard disk drive
612
- 593: harmonica
613
- 594: harp
614
- 595: harvester
615
- 596: hatchet
616
- 597: holster
617
- 598: home theater
618
- 599: honeycomb
619
- 600: hook
620
- 601: hoop skirt
621
- 602: horizontal bar
622
- 603: horse-drawn vehicle
623
- 604: hourglass
624
- 605: iPod
625
- 606: clothes iron
626
- 607: jack-o'-lantern
627
- 608: jeans
628
- 609: jeep
629
- 610: T-shirt
630
- 611: jigsaw puzzle
631
- 612: pulled rickshaw
632
- 613: joystick
633
- 614: kimono
634
- 615: knee pad
635
- 616: knot
636
- 617: lab coat
637
- 618: ladle
638
- 619: lampshade
639
- 620: laptop computer
640
- 621: lawn mower
641
- 622: lens cap
642
- 623: paper knife
643
- 624: library
644
- 625: lifeboat
645
- 626: lighter
646
- 627: limousine
647
- 628: ocean liner
648
- 629: lipstick
649
- 630: slip-on shoe
650
- 631: lotion
651
- 632: speaker
652
- 633: loupe
653
- 634: sawmill
654
- 635: magnetic compass
655
- 636: mail bag
656
- 637: mailbox
657
- 638: tights
658
- 639: tank suit
659
- 640: manhole cover
660
- 641: maraca
661
- 642: marimba
662
- 643: mask
663
- 644: match
664
- 645: maypole
665
- 646: maze
666
- 647: measuring cup
667
- 648: medicine chest
668
- 649: megalith
669
- 650: microphone
670
- 651: microwave oven
671
- 652: military uniform
672
- 653: milk can
673
- 654: minibus
674
- 655: miniskirt
675
- 656: minivan
676
- 657: missile
677
- 658: mitten
678
- 659: mixing bowl
679
- 660: mobile home
680
- 661: Model T
681
- 662: modem
682
- 663: monastery
683
- 664: monitor
684
- 665: moped
685
- 666: mortar
686
- 667: square academic cap
687
- 668: mosque
688
- 669: mosquito net
689
- 670: scooter
690
- 671: mountain bike
691
- 672: tent
692
- 673: computer mouse
693
- 674: mousetrap
694
- 675: moving van
695
- 676: muzzle
696
- 677: nail
697
- 678: neck brace
698
- 679: necklace
699
- 680: nipple
700
- 681: notebook computer
701
- 682: obelisk
702
- 683: oboe
703
- 684: ocarina
704
- 685: odometer
705
- 686: oil filter
706
- 687: organ
707
- 688: oscilloscope
708
- 689: overskirt
709
- 690: bullock cart
710
- 691: oxygen mask
711
- 692: packet
712
- 693: paddle
713
- 694: paddle wheel
714
- 695: padlock
715
- 696: paintbrush
716
- 697: pajamas
717
- 698: palace
718
- 699: pan flute
719
- 700: paper towel
720
- 701: parachute
721
- 702: parallel bars
722
- 703: park bench
723
- 704: parking meter
724
- 705: passenger car
725
- 706: patio
726
- 707: payphone
727
- 708: pedestal
728
- 709: pencil case
729
- 710: pencil sharpener
730
- 711: perfume
731
- 712: Petri dish
732
- 713: photocopier
733
- 714: plectrum
734
- 715: Pickelhaube
735
- 716: picket fence
736
- 717: pickup truck
737
- 718: pier
738
- 719: piggy bank
739
- 720: pill bottle
740
- 721: pillow
741
- 722: ping-pong ball
742
- 723: pinwheel
743
- 724: pirate ship
744
- 725: pitcher
745
- 726: hand plane
746
- 727: planetarium
747
- 728: plastic bag
748
- 729: plate rack
749
- 730: plow
750
- 731: plunger
751
- 732: Polaroid camera
752
- 733: pole
753
- 734: police van
754
- 735: poncho
755
- 736: billiard table
756
- 737: soda bottle
757
- 738: pot
758
- 739: potter's wheel
759
- 740: power drill
760
- 741: prayer rug
761
- 742: printer
762
- 743: prison
763
- 744: projectile
764
- 745: projector
765
- 746: hockey puck
766
- 747: punching bag
767
- 748: purse
768
- 749: quill
769
- 750: quilt
770
- 751: race car
771
- 752: racket
772
- 753: radiator
773
- 754: radio
774
- 755: radio telescope
775
- 756: rain barrel
776
- 757: recreational vehicle
777
- 758: reel
778
- 759: reflex camera
779
- 760: refrigerator
780
- 761: remote control
781
- 762: restaurant
782
- 763: revolver
783
- 764: rifle
784
- 765: rocking chair
785
- 766: rotisserie
786
- 767: eraser
787
- 768: rugby ball
788
- 769: ruler
789
- 770: running shoe
790
- 771: safe
791
- 772: safety pin
792
- 773: salt shaker
793
- 774: sandal
794
- 775: sarong
795
- 776: saxophone
796
- 777: scabbard
797
- 778: weighing scale
798
- 779: school bus
799
- 780: schooner
800
- 781: scoreboard
801
- 782: CRT screen
802
- 783: screw
803
- 784: screwdriver
804
- 785: seat belt
805
- 786: sewing machine
806
- 787: shield
807
- 788: shoe store
808
- 789: shoji
809
- 790: shopping basket
810
- 791: shopping cart
811
- 792: shovel
812
- 793: shower cap
813
- 794: shower curtain
814
- 795: ski
815
- 796: ski mask
816
- 797: sleeping bag
817
- 798: slide rule
818
- 799: sliding door
819
- 800: slot machine
820
- 801: snorkel
821
- 802: snowmobile
822
- 803: snowplow
823
- 804: soap dispenser
824
- 805: soccer ball
825
- 806: sock
826
- 807: solar thermal collector
827
- 808: sombrero
828
- 809: soup bowl
829
- 810: space bar
830
- 811: space heater
831
- 812: space shuttle
832
- 813: spatula
833
- 814: motorboat
834
- 815: spider web
835
- 816: spindle
836
- 817: sports car
837
- 818: spotlight
838
- 819: stage
839
- 820: steam locomotive
840
- 821: through arch bridge
841
- 822: steel drum
842
- 823: stethoscope
843
- 824: scarf
844
- 825: stone wall
845
- 826: stopwatch
846
- 827: stove
847
- 828: strainer
848
- 829: tram
849
- 830: stretcher
850
- 831: couch
851
- 832: stupa
852
- 833: submarine
853
- 834: suit
854
- 835: sundial
855
- 836: sunglass
856
- 837: sunglasses
857
- 838: sunscreen
858
- 839: suspension bridge
859
- 840: mop
860
- 841: sweatshirt
861
- 842: swimsuit
862
- 843: swing
863
- 844: switch
864
- 845: syringe
865
- 846: table lamp
866
- 847: tank
867
- 848: tape player
868
- 849: teapot
869
- 850: teddy bear
870
- 851: television
871
- 852: tennis ball
872
- 853: thatched roof
873
- 854: front curtain
874
- 855: thimble
875
- 856: threshing machine
876
- 857: throne
877
- 858: tile roof
878
- 859: toaster
879
- 860: tobacco shop
880
- 861: toilet seat
881
- 862: torch
882
- 863: totem pole
883
- 864: tow truck
884
- 865: toy store
885
- 866: tractor
886
- 867: semi-trailer truck
887
- 868: tray
888
- 869: trench coat
889
- 870: tricycle
890
- 871: trimaran
891
- 872: tripod
892
- 873: triumphal arch
893
- 874: trolleybus
894
- 875: trombone
895
- 876: tub
896
- 877: turnstile
897
- 878: typewriter keyboard
898
- 879: umbrella
899
- 880: unicycle
900
- 881: upright piano
901
- 882: vacuum cleaner
902
- 883: vase
903
- 884: vault
904
- 885: velvet
905
- 886: vending machine
906
- 887: vestment
907
- 888: viaduct
908
- 889: violin
909
- 890: volleyball
910
- 891: waffle iron
911
- 892: wall clock
912
- 893: wallet
913
- 894: wardrobe
914
- 895: military aircraft
915
- 896: sink
916
- 897: washing machine
917
- 898: water bottle
918
- 899: water jug
919
- 900: water tower
920
- 901: whiskey jug
921
- 902: whistle
922
- 903: wig
923
- 904: window screen
924
- 905: window shade
925
- 906: Windsor tie
926
- 907: wine bottle
927
- 908: wing
928
- 909: wok
929
- 910: wooden spoon
930
- 911: wool
931
- 912: split-rail fence
932
- 913: shipwreck
933
- 914: yawl
934
- 915: yurt
935
- 916: website
936
- 917: comic book
937
- 918: crossword
938
- 919: traffic sign
939
- 920: traffic light
940
- 921: dust jacket
941
- 922: menu
942
- 923: plate
943
- 924: guacamole
944
- 925: consomme
945
- 926: hot pot
946
- 927: trifle
947
- 928: ice cream
948
- 929: ice pop
949
- 930: baguette
950
- 931: bagel
951
- 932: pretzel
952
- 933: cheeseburger
953
- 934: hot dog
954
- 935: mashed potato
955
- 936: cabbage
956
- 937: broccoli
957
- 938: cauliflower
958
- 939: zucchini
959
- 940: spaghetti squash
960
- 941: acorn squash
961
- 942: butternut squash
962
- 943: cucumber
963
- 944: artichoke
964
- 945: bell pepper
965
- 946: cardoon
966
- 947: mushroom
967
- 948: Granny Smith
968
- 949: strawberry
969
- 950: orange
970
- 951: lemon
971
- 952: fig
972
- 953: pineapple
973
- 954: banana
974
- 955: jackfruit
975
- 956: custard apple
976
- 957: pomegranate
977
- 958: hay
978
- 959: carbonara
979
- 960: chocolate syrup
980
- 961: dough
981
- 962: meatloaf
982
- 963: pizza
983
- 964: pot pie
984
- 965: burrito
985
- 966: red wine
986
- 967: espresso
987
- 968: cup
988
- 969: eggnog
989
- 970: alp
990
- 971: bubble
991
- 972: cliff
992
- 973: coral reef
993
- 974: geyser
994
- 975: lakeshore
995
- 976: promontory
996
- 977: shoal
997
- 978: seashore
998
- 979: valley
999
- 980: volcano
1000
- 981: baseball player
1001
- 982: bridegroom
1002
- 983: scuba diver
1003
- 984: rapeseed
1004
- 985: daisy
1005
- 986: yellow lady's slipper
1006
- 987: corn
1007
- 988: acorn
1008
- 989: rose hip
1009
- 990: horse chestnut seed
1010
- 991: coral fungus
1011
- 992: agaric
1012
- 993: gyromitra
1013
- 994: stinkhorn mushroom
1014
- 995: earth star
1015
- 996: hen-of-the-woods
1016
- 997: bolete
1017
- 998: ear
1018
- 999: toilet paper
1019
-
1020
- # Download script/URL (optional)
1021
- download: data/scripts/get_imagenet1000.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/Objects365.yaml DELETED
@@ -1,437 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Objects365 dataset https://www.objects365.org/ by Megvii
4
- # Example usage: python train.py --data Objects365.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/Objects365 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1742289 images
13
- val: images/val # val images (relative to 'path') 80000 images
14
- test: # test images (optional)
15
-
16
- # Classes
17
- names:
18
- 0: Person
19
- 1: Sneakers
20
- 2: Chair
21
- 3: Other Shoes
22
- 4: Hat
23
- 5: Car
24
- 6: Lamp
25
- 7: Glasses
26
- 8: Bottle
27
- 9: Desk
28
- 10: Cup
29
- 11: Street Lights
30
- 12: Cabinet/shelf
31
- 13: Handbag/Satchel
32
- 14: Bracelet
33
- 15: Plate
34
- 16: Picture/Frame
35
- 17: Helmet
36
- 18: Book
37
- 19: Gloves
38
- 20: Storage box
39
- 21: Boat
40
- 22: Leather Shoes
41
- 23: Flower
42
- 24: Bench
43
- 25: Potted Plant
44
- 26: Bowl/Basin
45
- 27: Flag
46
- 28: Pillow
47
- 29: Boots
48
- 30: Vase
49
- 31: Microphone
50
- 32: Necklace
51
- 33: Ring
52
- 34: SUV
53
- 35: Wine Glass
54
- 36: Belt
55
- 37: Monitor/TV
56
- 38: Backpack
57
- 39: Umbrella
58
- 40: Traffic Light
59
- 41: Speaker
60
- 42: Watch
61
- 43: Tie
62
- 44: Trash bin Can
63
- 45: Slippers
64
- 46: Bicycle
65
- 47: Stool
66
- 48: Barrel/bucket
67
- 49: Van
68
- 50: Couch
69
- 51: Sandals
70
- 52: Basket
71
- 53: Drum
72
- 54: Pen/Pencil
73
- 55: Bus
74
- 56: Wild Bird
75
- 57: High Heels
76
- 58: Motorcycle
77
- 59: Guitar
78
- 60: Carpet
79
- 61: Cell Phone
80
- 62: Bread
81
- 63: Camera
82
- 64: Canned
83
- 65: Truck
84
- 66: Traffic cone
85
- 67: Cymbal
86
- 68: Lifesaver
87
- 69: Towel
88
- 70: Stuffed Toy
89
- 71: Candle
90
- 72: Sailboat
91
- 73: Laptop
92
- 74: Awning
93
- 75: Bed
94
- 76: Faucet
95
- 77: Tent
96
- 78: Horse
97
- 79: Mirror
98
- 80: Power outlet
99
- 81: Sink
100
- 82: Apple
101
- 83: Air Conditioner
102
- 84: Knife
103
- 85: Hockey Stick
104
- 86: Paddle
105
- 87: Pickup Truck
106
- 88: Fork
107
- 89: Traffic Sign
108
- 90: Balloon
109
- 91: Tripod
110
- 92: Dog
111
- 93: Spoon
112
- 94: Clock
113
- 95: Pot
114
- 96: Cow
115
- 97: Cake
116
- 98: Dinning Table
117
- 99: Sheep
118
- 100: Hanger
119
- 101: Blackboard/Whiteboard
120
- 102: Napkin
121
- 103: Other Fish
122
- 104: Orange/Tangerine
123
- 105: Toiletry
124
- 106: Keyboard
125
- 107: Tomato
126
- 108: Lantern
127
- 109: Machinery Vehicle
128
- 110: Fan
129
- 111: Green Vegetables
130
- 112: Banana
131
- 113: Baseball Glove
132
- 114: Airplane
133
- 115: Mouse
134
- 116: Train
135
- 117: Pumpkin
136
- 118: Soccer
137
- 119: Skiboard
138
- 120: Luggage
139
- 121: Nightstand
140
- 122: Tea pot
141
- 123: Telephone
142
- 124: Trolley
143
- 125: Head Phone
144
- 126: Sports Car
145
- 127: Stop Sign
146
- 128: Dessert
147
- 129: Scooter
148
- 130: Stroller
149
- 131: Crane
150
- 132: Remote
151
- 133: Refrigerator
152
- 134: Oven
153
- 135: Lemon
154
- 136: Duck
155
- 137: Baseball Bat
156
- 138: Surveillance Camera
157
- 139: Cat
158
- 140: Jug
159
- 141: Broccoli
160
- 142: Piano
161
- 143: Pizza
162
- 144: Elephant
163
- 145: Skateboard
164
- 146: Surfboard
165
- 147: Gun
166
- 148: Skating and Skiing shoes
167
- 149: Gas stove
168
- 150: Donut
169
- 151: Bow Tie
170
- 152: Carrot
171
- 153: Toilet
172
- 154: Kite
173
- 155: Strawberry
174
- 156: Other Balls
175
- 157: Shovel
176
- 158: Pepper
177
- 159: Computer Box
178
- 160: Toilet Paper
179
- 161: Cleaning Products
180
- 162: Chopsticks
181
- 163: Microwave
182
- 164: Pigeon
183
- 165: Baseball
184
- 166: Cutting/chopping Board
185
- 167: Coffee Table
186
- 168: Side Table
187
- 169: Scissors
188
- 170: Marker
189
- 171: Pie
190
- 172: Ladder
191
- 173: Snowboard
192
- 174: Cookies
193
- 175: Radiator
194
- 176: Fire Hydrant
195
- 177: Basketball
196
- 178: Zebra
197
- 179: Grape
198
- 180: Giraffe
199
- 181: Potato
200
- 182: Sausage
201
- 183: Tricycle
202
- 184: Violin
203
- 185: Egg
204
- 186: Fire Extinguisher
205
- 187: Candy
206
- 188: Fire Truck
207
- 189: Billiards
208
- 190: Converter
209
- 191: Bathtub
210
- 192: Wheelchair
211
- 193: Golf Club
212
- 194: Briefcase
213
- 195: Cucumber
214
- 196: Cigar/Cigarette
215
- 197: Paint Brush
216
- 198: Pear
217
- 199: Heavy Truck
218
- 200: Hamburger
219
- 201: Extractor
220
- 202: Extension Cord
221
- 203: Tong
222
- 204: Tennis Racket
223
- 205: Folder
224
- 206: American Football
225
- 207: earphone
226
- 208: Mask
227
- 209: Kettle
228
- 210: Tennis
229
- 211: Ship
230
- 212: Swing
231
- 213: Coffee Machine
232
- 214: Slide
233
- 215: Carriage
234
- 216: Onion
235
- 217: Green beans
236
- 218: Projector
237
- 219: Frisbee
238
- 220: Washing Machine/Drying Machine
239
- 221: Chicken
240
- 222: Printer
241
- 223: Watermelon
242
- 224: Saxophone
243
- 225: Tissue
244
- 226: Toothbrush
245
- 227: Ice cream
246
- 228: Hot-air balloon
247
- 229: Cello
248
- 230: French Fries
249
- 231: Scale
250
- 232: Trophy
251
- 233: Cabbage
252
- 234: Hot dog
253
- 235: Blender
254
- 236: Peach
255
- 237: Rice
256
- 238: Wallet/Purse
257
- 239: Volleyball
258
- 240: Deer
259
- 241: Goose
260
- 242: Tape
261
- 243: Tablet
262
- 244: Cosmetics
263
- 245: Trumpet
264
- 246: Pineapple
265
- 247: Golf Ball
266
- 248: Ambulance
267
- 249: Parking meter
268
- 250: Mango
269
- 251: Key
270
- 252: Hurdle
271
- 253: Fishing Rod
272
- 254: Medal
273
- 255: Flute
274
- 256: Brush
275
- 257: Penguin
276
- 258: Megaphone
277
- 259: Corn
278
- 260: Lettuce
279
- 261: Garlic
280
- 262: Swan
281
- 263: Helicopter
282
- 264: Green Onion
283
- 265: Sandwich
284
- 266: Nuts
285
- 267: Speed Limit Sign
286
- 268: Induction Cooker
287
- 269: Broom
288
- 270: Trombone
289
- 271: Plum
290
- 272: Rickshaw
291
- 273: Goldfish
292
- 274: Kiwi fruit
293
- 275: Router/modem
294
- 276: Poker Card
295
- 277: Toaster
296
- 278: Shrimp
297
- 279: Sushi
298
- 280: Cheese
299
- 281: Notepaper
300
- 282: Cherry
301
- 283: Pliers
302
- 284: CD
303
- 285: Pasta
304
- 286: Hammer
305
- 287: Cue
306
- 288: Avocado
307
- 289: Hamimelon
308
- 290: Flask
309
- 291: Mushroom
310
- 292: Screwdriver
311
- 293: Soap
312
- 294: Recorder
313
- 295: Bear
314
- 296: Eggplant
315
- 297: Board Eraser
316
- 298: Coconut
317
- 299: Tape Measure/Ruler
318
- 300: Pig
319
- 301: Showerhead
320
- 302: Globe
321
- 303: Chips
322
- 304: Steak
323
- 305: Crosswalk Sign
324
- 306: Stapler
325
- 307: Camel
326
- 308: Formula 1
327
- 309: Pomegranate
328
- 310: Dishwasher
329
- 311: Crab
330
- 312: Hoverboard
331
- 313: Meat ball
332
- 314: Rice Cooker
333
- 315: Tuba
334
- 316: Calculator
335
- 317: Papaya
336
- 318: Antelope
337
- 319: Parrot
338
- 320: Seal
339
- 321: Butterfly
340
- 322: Dumbbell
341
- 323: Donkey
342
- 324: Lion
343
- 325: Urinal
344
- 326: Dolphin
345
- 327: Electric Drill
346
- 328: Hair Dryer
347
- 329: Egg tart
348
- 330: Jellyfish
349
- 331: Treadmill
350
- 332: Lighter
351
- 333: Grapefruit
352
- 334: Game board
353
- 335: Mop
354
- 336: Radish
355
- 337: Baozi
356
- 338: Target
357
- 339: French
358
- 340: Spring Rolls
359
- 341: Monkey
360
- 342: Rabbit
361
- 343: Pencil Case
362
- 344: Yak
363
- 345: Red Cabbage
364
- 346: Binoculars
365
- 347: Asparagus
366
- 348: Barbell
367
- 349: Scallop
368
- 350: Noddles
369
- 351: Comb
370
- 352: Dumpling
371
- 353: Oyster
372
- 354: Table Tennis paddle
373
- 355: Cosmetics Brush/Eyeliner Pencil
374
- 356: Chainsaw
375
- 357: Eraser
376
- 358: Lobster
377
- 359: Durian
378
- 360: Okra
379
- 361: Lipstick
380
- 362: Cosmetics Mirror
381
- 363: Curling
382
- 364: Table Tennis
383
-
384
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
385
- download: |
386
- from tqdm import tqdm
387
-
388
- from utils.general import Path, check_requirements, download, np, xyxy2xywhn
389
-
390
- check_requirements('pycocotools>=2.0')
391
- from pycocotools.coco import COCO
392
-
393
- # Make Directories
394
- dir = Path(yaml['path']) # dataset root dir
395
- for p in 'images', 'labels':
396
- (dir / p).mkdir(parents=True, exist_ok=True)
397
- for q in 'train', 'val':
398
- (dir / p / q).mkdir(parents=True, exist_ok=True)
399
-
400
- # Train, Val Splits
401
- for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
402
- print(f"Processing {split} in {patches} patches ...")
403
- images, labels = dir / 'images' / split, dir / 'labels' / split
404
-
405
- # Download
406
- url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
407
- if split == 'train':
408
- download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
409
- download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
410
- elif split == 'val':
411
- download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
412
- download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
413
- download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
414
-
415
- # Move
416
- for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
417
- f.rename(images / f.name) # move to /images/{split}
418
-
419
- # Labels
420
- coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
421
- names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
422
- for cid, cat in enumerate(names):
423
- catIds = coco.getCatIds(catNms=[cat])
424
- imgIds = coco.getImgIds(catIds=catIds)
425
- for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
426
- width, height = im["width"], im["height"]
427
- path = Path(im["file_name"]) # image filename
428
- try:
429
- with open(labels / path.with_suffix('.txt').name, 'a') as file:
430
- annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=False)
431
- for a in coco.loadAnns(annIds):
432
- x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
433
- xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
434
- x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
435
- file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
436
- except Exception as e:
437
- print(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/SKU-110K.yaml DELETED
@@ -1,52 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
4
- # Example usage: python train.py --data SKU-110K.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── SKU-110K ← downloads here (13.6 GB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/SKU-110K # dataset root dir
12
- train: train.txt # train images (relative to 'path') 8219 images
13
- val: val.txt # val images (relative to 'path') 588 images
14
- test: test.txt # test images (optional) 2936 images
15
-
16
- # Classes
17
- names:
18
- 0: object
19
-
20
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
21
- download: |
22
- import shutil
23
- from tqdm import tqdm
24
- from utils.general import np, pd, Path, download, xyxy2xywh
25
-
26
-
27
- # Download
28
- dir = Path(yaml['path']) # dataset root dir
29
- parent = Path(dir.parent) # download dir
30
- urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
31
- download(urls, dir=parent, delete=False)
32
-
33
- # Rename directories
34
- if dir.exists():
35
- shutil.rmtree(dir)
36
- (parent / 'SKU110K_fixed').rename(dir) # rename dir
37
- (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
38
-
39
- # Convert labels
40
- names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
41
- for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
42
- x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
43
- images, unique_images = x[:, 0], np.unique(x[:, 0])
44
- with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
45
- f.writelines(f'./images/{s}\n' for s in unique_images)
46
- for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
47
- cls = 0 # single-class dataset
48
- with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
49
- for r in x[images == im]:
50
- w, h = r[6], r[7] # image width, height
51
- xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
52
- f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/VOC.yaml DELETED
@@ -1,99 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
4
- # Example usage: python train.py --data VOC.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── VOC ← downloads here (2.8 GB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/VOC
12
- train: # train images (relative to 'path') 16551 images
13
- - images/train2012
14
- - images/train2007
15
- - images/val2012
16
- - images/val2007
17
- val: # val images (relative to 'path') 4952 images
18
- - images/test2007
19
- test: # test images (optional)
20
- - images/test2007
21
-
22
- # Classes
23
- names:
24
- 0: aeroplane
25
- 1: bicycle
26
- 2: bird
27
- 3: boat
28
- 4: bottle
29
- 5: bus
30
- 6: car
31
- 7: cat
32
- 8: chair
33
- 9: cow
34
- 10: diningtable
35
- 11: dog
36
- 12: horse
37
- 13: motorbike
38
- 14: person
39
- 15: pottedplant
40
- 16: sheep
41
- 17: sofa
42
- 18: train
43
- 19: tvmonitor
44
-
45
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
46
- download: |
47
- import xml.etree.ElementTree as ET
48
-
49
- from tqdm import tqdm
50
- from utils.general import download, Path
51
-
52
-
53
- def convert_label(path, lb_path, year, image_id):
54
- def convert_box(size, box):
55
- dw, dh = 1. / size[0], 1. / size[1]
56
- x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
57
- return x * dw, y * dh, w * dw, h * dh
58
-
59
- in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
60
- out_file = open(lb_path, 'w')
61
- tree = ET.parse(in_file)
62
- root = tree.getroot()
63
- size = root.find('size')
64
- w = int(size.find('width').text)
65
- h = int(size.find('height').text)
66
-
67
- names = list(yaml['names'].values()) # names list
68
- for obj in root.iter('object'):
69
- cls = obj.find('name').text
70
- if cls in names and int(obj.find('difficult').text) != 1:
71
- xmlbox = obj.find('bndbox')
72
- bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
73
- cls_id = names.index(cls) # class id
74
- out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
75
-
76
-
77
- # Download
78
- dir = Path(yaml['path']) # dataset root dir
79
- url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
80
- urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
81
- f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
82
- f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
83
- download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
84
-
85
- # Convert
86
- path = dir / 'images/VOCdevkit'
87
- for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
88
- imgs_path = dir / 'images' / f'{image_set}{year}'
89
- lbs_path = dir / 'labels' / f'{image_set}{year}'
90
- imgs_path.mkdir(exist_ok=True, parents=True)
91
- lbs_path.mkdir(exist_ok=True, parents=True)
92
-
93
- with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
94
- image_ids = f.read().strip().split()
95
- for id in tqdm(image_ids, desc=f'{image_set}{year}'):
96
- f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
97
- lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
98
- f.rename(imgs_path / f.name) # move image
99
- convert_label(path, lb_path, year, id) # convert labels to YOLO format
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/VisDrone.yaml DELETED
@@ -1,69 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
4
- # Example usage: python train.py --data VisDrone.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── VisDrone ← downloads here (2.3 GB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/VisDrone # dataset root dir
12
- train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
- val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
- test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15
-
16
- # Classes
17
- names:
18
- 0: pedestrian
19
- 1: people
20
- 2: bicycle
21
- 3: car
22
- 4: van
23
- 5: truck
24
- 6: tricycle
25
- 7: awning-tricycle
26
- 8: bus
27
- 9: motor
28
-
29
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
30
- download: |
31
- from utils.general import download, os, Path
32
-
33
- def visdrone2yolo(dir):
34
- from PIL import Image
35
- from tqdm import tqdm
36
-
37
- def convert_box(size, box):
38
- # Convert VisDrone box to YOLO xywh box
39
- dw = 1. / size[0]
40
- dh = 1. / size[1]
41
- return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
42
-
43
- (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
44
- pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
45
- for f in pbar:
46
- img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
47
- lines = []
48
- with open(f, 'r') as file: # read annotation.txt
49
- for row in [x.split(',') for x in file.read().strip().splitlines()]:
50
- if row[4] == '0': # VisDrone 'ignored regions' class 0
51
- continue
52
- cls = int(row[5]) - 1
53
- box = convert_box(img_size, tuple(map(int, row[:4])))
54
- lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
55
- with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
56
- fl.writelines(lines) # write label.txt
57
-
58
-
59
- # Download
60
- dir = Path(yaml['path']) # dataset root dir
61
- urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip',
62
- 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip',
63
- 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip',
64
- 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip']
65
- download(urls, dir=dir, curl=True, threads=4)
66
-
67
- # Convert
68
- for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
69
- visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/coco.yaml DELETED
@@ -1,115 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # COCO 2017 dataset http://cocodataset.org by Microsoft
4
- # Example usage: python train.py --data coco.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── coco ← downloads here (20.1 GB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/coco # dataset root dir
12
- train: train2017.txt # train images (relative to 'path') 118287 images
13
- val: val2017.txt # val images (relative to 'path') 5000 images
14
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15
-
16
- # Classes
17
- names:
18
- 0: person
19
- 1: bicycle
20
- 2: car
21
- 3: motorcycle
22
- 4: airplane
23
- 5: bus
24
- 6: train
25
- 7: truck
26
- 8: boat
27
- 9: traffic light
28
- 10: fire hydrant
29
- 11: stop sign
30
- 12: parking meter
31
- 13: bench
32
- 14: bird
33
- 15: cat
34
- 16: dog
35
- 17: horse
36
- 18: sheep
37
- 19: cow
38
- 20: elephant
39
- 21: bear
40
- 22: zebra
41
- 23: giraffe
42
- 24: backpack
43
- 25: umbrella
44
- 26: handbag
45
- 27: tie
46
- 28: suitcase
47
- 29: frisbee
48
- 30: skis
49
- 31: snowboard
50
- 32: sports ball
51
- 33: kite
52
- 34: baseball bat
53
- 35: baseball glove
54
- 36: skateboard
55
- 37: surfboard
56
- 38: tennis racket
57
- 39: bottle
58
- 40: wine glass
59
- 41: cup
60
- 42: fork
61
- 43: knife
62
- 44: spoon
63
- 45: bowl
64
- 46: banana
65
- 47: apple
66
- 48: sandwich
67
- 49: orange
68
- 50: broccoli
69
- 51: carrot
70
- 52: hot dog
71
- 53: pizza
72
- 54: donut
73
- 55: cake
74
- 56: chair
75
- 57: couch
76
- 58: potted plant
77
- 59: bed
78
- 60: dining table
79
- 61: toilet
80
- 62: tv
81
- 63: laptop
82
- 64: mouse
83
- 65: remote
84
- 66: keyboard
85
- 67: cell phone
86
- 68: microwave
87
- 69: oven
88
- 70: toaster
89
- 71: sink
90
- 72: refrigerator
91
- 73: book
92
- 74: clock
93
- 75: vase
94
- 76: scissors
95
- 77: teddy bear
96
- 78: hair drier
97
- 79: toothbrush
98
-
99
- # Download script/URL (optional)
100
- download: |
101
- from utils.general import download, Path
102
-
103
-
104
- # Download labels
105
- segments = False # segment or box labels
106
- dir = Path(yaml['path']) # dataset root dir
107
- url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
108
- urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
109
- download(urls, dir=dir.parent)
110
-
111
- # Download data
112
- urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
113
- 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
114
- 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
115
- download(urls, dir=dir / 'images', threads=3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/coco128-seg.yaml DELETED
@@ -1,100 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
4
- # Example usage: python train.py --data coco128.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── coco128-seg ← downloads here (7 MB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/coco128-seg # dataset root dir
12
- train: images/train2017 # train images (relative to 'path') 128 images
13
- val: images/train2017 # val images (relative to 'path') 128 images
14
- test: # test images (optional)
15
-
16
- # Classes
17
- names:
18
- 0: person
19
- 1: bicycle
20
- 2: car
21
- 3: motorcycle
22
- 4: airplane
23
- 5: bus
24
- 6: train
25
- 7: truck
26
- 8: boat
27
- 9: traffic light
28
- 10: fire hydrant
29
- 11: stop sign
30
- 12: parking meter
31
- 13: bench
32
- 14: bird
33
- 15: cat
34
- 16: dog
35
- 17: horse
36
- 18: sheep
37
- 19: cow
38
- 20: elephant
39
- 21: bear
40
- 22: zebra
41
- 23: giraffe
42
- 24: backpack
43
- 25: umbrella
44
- 26: handbag
45
- 27: tie
46
- 28: suitcase
47
- 29: frisbee
48
- 30: skis
49
- 31: snowboard
50
- 32: sports ball
51
- 33: kite
52
- 34: baseball bat
53
- 35: baseball glove
54
- 36: skateboard
55
- 37: surfboard
56
- 38: tennis racket
57
- 39: bottle
58
- 40: wine glass
59
- 41: cup
60
- 42: fork
61
- 43: knife
62
- 44: spoon
63
- 45: bowl
64
- 46: banana
65
- 47: apple
66
- 48: sandwich
67
- 49: orange
68
- 50: broccoli
69
- 51: carrot
70
- 52: hot dog
71
- 53: pizza
72
- 54: donut
73
- 55: cake
74
- 56: chair
75
- 57: couch
76
- 58: potted plant
77
- 59: bed
78
- 60: dining table
79
- 61: toilet
80
- 62: tv
81
- 63: laptop
82
- 64: mouse
83
- 65: remote
84
- 66: keyboard
85
- 67: cell phone
86
- 68: microwave
87
- 69: oven
88
- 70: toaster
89
- 71: sink
90
- 72: refrigerator
91
- 73: book
92
- 74: clock
93
- 75: vase
94
- 76: scissors
95
- 77: teddy bear
96
- 78: hair drier
97
- 79: toothbrush
98
-
99
- # Download script/URL (optional)
100
- download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/coco128.yaml DELETED
@@ -1,100 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
4
- # Example usage: python train.py --data coco128.yaml
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── coco128 ← downloads here (7 MB)
9
-
10
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/coco128 # dataset root dir
12
- train: images/train2017 # train images (relative to 'path') 128 images
13
- val: images/train2017 # val images (relative to 'path') 128 images
14
- test: # test images (optional)
15
-
16
- # Classes
17
- names:
18
- 0: person
19
- 1: bicycle
20
- 2: car
21
- 3: motorcycle
22
- 4: airplane
23
- 5: bus
24
- 6: train
25
- 7: truck
26
- 8: boat
27
- 9: traffic light
28
- 10: fire hydrant
29
- 11: stop sign
30
- 12: parking meter
31
- 13: bench
32
- 14: bird
33
- 15: cat
34
- 16: dog
35
- 17: horse
36
- 18: sheep
37
- 19: cow
38
- 20: elephant
39
- 21: bear
40
- 22: zebra
41
- 23: giraffe
42
- 24: backpack
43
- 25: umbrella
44
- 26: handbag
45
- 27: tie
46
- 28: suitcase
47
- 29: frisbee
48
- 30: skis
49
- 31: snowboard
50
- 32: sports ball
51
- 33: kite
52
- 34: baseball bat
53
- 35: baseball glove
54
- 36: skateboard
55
- 37: surfboard
56
- 38: tennis racket
57
- 39: bottle
58
- 40: wine glass
59
- 41: cup
60
- 42: fork
61
- 43: knife
62
- 44: spoon
63
- 45: bowl
64
- 46: banana
65
- 47: apple
66
- 48: sandwich
67
- 49: orange
68
- 50: broccoli
69
- 51: carrot
70
- 52: hot dog
71
- 53: pizza
72
- 54: donut
73
- 55: cake
74
- 56: chair
75
- 57: couch
76
- 58: potted plant
77
- 59: bed
78
- 60: dining table
79
- 61: toilet
80
- 62: tv
81
- 63: laptop
82
- 64: mouse
83
- 65: remote
84
- 66: keyboard
85
- 67: cell phone
86
- 68: microwave
87
- 69: oven
88
- 70: toaster
89
- 71: sink
90
- 72: refrigerator
91
- 73: book
92
- 74: clock
93
- 75: vase
94
- 76: scissors
95
- 77: teddy bear
96
- 78: hair drier
97
- 79: toothbrush
98
-
99
- # Download script/URL (optional)
100
- download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/hyps/hyp.Objects365.yaml DELETED
@@ -1,35 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Hyperparameters for Objects365 training
4
- # python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
5
- # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
6
-
7
- lr0: 0.00258
8
- lrf: 0.17
9
- momentum: 0.779
10
- weight_decay: 0.00058
11
- warmup_epochs: 1.33
12
- warmup_momentum: 0.86
13
- warmup_bias_lr: 0.0711
14
- box: 0.0539
15
- cls: 0.299
16
- cls_pw: 0.825
17
- obj: 0.632
18
- obj_pw: 1.0
19
- iou_t: 0.2
20
- anchor_t: 3.44
21
- anchors: 3.2
22
- fl_gamma: 0.0
23
- hsv_h: 0.0188
24
- hsv_s: 0.704
25
- hsv_v: 0.36
26
- degrees: 0.0
27
- translate: 0.0902
28
- scale: 0.491
29
- shear: 0.0
30
- perspective: 0.0
31
- flipud: 0.0
32
- fliplr: 0.5
33
- mosaic: 1.0
34
- mixup: 0.0
35
- copy_paste: 0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/hyps/hyp.VOC.yaml DELETED
@@ -1,41 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Hyperparameters for VOC training
4
- # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
5
- # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
6
-
7
- # YOLOv5 Hyperparameter Evolution Results
8
- # Best generation: 467
9
- # Last generation: 996
10
- # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
11
- # 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
12
-
13
- lr0: 0.00334
14
- lrf: 0.15135
15
- momentum: 0.74832
16
- weight_decay: 0.00025
17
- warmup_epochs: 3.3835
18
- warmup_momentum: 0.59462
19
- warmup_bias_lr: 0.18657
20
- box: 0.02
21
- cls: 0.21638
22
- cls_pw: 0.5
23
- obj: 0.51728
24
- obj_pw: 0.67198
25
- iou_t: 0.2
26
- anchor_t: 3.3744
27
- fl_gamma: 0.0
28
- hsv_h: 0.01041
29
- hsv_s: 0.54703
30
- hsv_v: 0.27739
31
- degrees: 0.0
32
- translate: 0.04591
33
- scale: 0.75544
34
- shear: 0.0
35
- perspective: 0.0
36
- flipud: 0.0
37
- fliplr: 0.5
38
- mosaic: 0.85834
39
- mixup: 0.04266
40
- copy_paste: 0.0
41
- anchors: 3.412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/hyps/hyp.no-augmentation.yaml DELETED
@@ -1,36 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Hyperparameters when using Albumentations frameworks
4
- # python train.py --hyp hyp.no-augmentation.yaml
5
- # See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
6
-
7
- lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
8
- lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
9
- momentum: 0.937 # SGD momentum/Adam beta1
10
- weight_decay: 0.0005 # optimizer weight decay 5e-4
11
- warmup_epochs: 3.0 # warmup epochs (fractions ok)
12
- warmup_momentum: 0.8 # warmup initial momentum
13
- warmup_bias_lr: 0.1 # warmup initial bias lr
14
- box: 0.05 # box loss gain
15
- cls: 0.3 # cls loss gain
16
- cls_pw: 1.0 # cls BCELoss positive_weight
17
- obj: 0.7 # obj loss gain (scale with pixels)
18
- obj_pw: 1.0 # obj BCELoss positive_weight
19
- iou_t: 0.20 # IoU training threshold
20
- anchor_t: 4.0 # anchor-multiple threshold
21
- # anchors: 3 # anchors per output layer (0 to ignore)
22
- # this parameters are all zero since we want to use albumentation framework
23
- fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
24
- hsv_h: 0 # image HSV-Hue augmentation (fraction)
25
- hsv_s: 0 # image HSV-Saturation augmentation (fraction)
26
- hsv_v: 0 # image HSV-Value augmentation (fraction)
27
- degrees: 0.0 # image rotation (+/- deg)
28
- translate: 0 # image translation (+/- fraction)
29
- scale: 0 # image scale (+/- gain)
30
- shear: 0 # image shear (+/- deg)
31
- perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
32
- flipud: 0.0 # image flip up-down (probability)
33
- fliplr: 0.0 # image flip left-right (probability)
34
- mosaic: 0.0 # image mosaic (probability)
35
- mixup: 0.0 # image mixup (probability)
36
- copy_paste: 0.0 # segment copy-paste (probability)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/hyps/hyp.scratch-high.yaml DELETED
@@ -1,35 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Hyperparameters for high-augmentation COCO training from scratch
4
- # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
5
- # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
6
-
7
- lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
8
- lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
9
- momentum: 0.937 # SGD momentum/Adam beta1
10
- weight_decay: 0.0005 # optimizer weight decay 5e-4
11
- warmup_epochs: 3.0 # warmup epochs (fractions ok)
12
- warmup_momentum: 0.8 # warmup initial momentum
13
- warmup_bias_lr: 0.1 # warmup initial bias lr
14
- box: 0.05 # box loss gain
15
- cls: 0.3 # cls loss gain
16
- cls_pw: 1.0 # cls BCELoss positive_weight
17
- obj: 0.7 # obj loss gain (scale with pixels)
18
- obj_pw: 1.0 # obj BCELoss positive_weight
19
- iou_t: 0.20 # IoU training threshold
20
- anchor_t: 4.0 # anchor-multiple threshold
21
- # anchors: 3 # anchors per output layer (0 to ignore)
22
- fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
23
- hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
24
- hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
25
- hsv_v: 0.4 # image HSV-Value augmentation (fraction)
26
- degrees: 0.0 # image rotation (+/- deg)
27
- translate: 0.1 # image translation (+/- fraction)
28
- scale: 0.9 # image scale (+/- gain)
29
- shear: 0.0 # image shear (+/- deg)
30
- perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
31
- flipud: 0.0 # image flip up-down (probability)
32
- fliplr: 0.5 # image flip left-right (probability)
33
- mosaic: 1.0 # image mosaic (probability)
34
- mixup: 0.1 # image mixup (probability)
35
- copy_paste: 0.1 # segment copy-paste (probability)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/hyps/hyp.scratch-low.yaml DELETED
@@ -1,35 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Hyperparameters for low-augmentation COCO training from scratch
4
- # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
5
- # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
6
-
7
- lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
8
- lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
9
- momentum: 0.937 # SGD momentum/Adam beta1
10
- weight_decay: 0.0005 # optimizer weight decay 5e-4
11
- warmup_epochs: 3.0 # warmup epochs (fractions ok)
12
- warmup_momentum: 0.8 # warmup initial momentum
13
- warmup_bias_lr: 0.1 # warmup initial bias lr
14
- box: 0.05 # box loss gain
15
- cls: 0.5 # cls loss gain
16
- cls_pw: 1.0 # cls BCELoss positive_weight
17
- obj: 1.0 # obj loss gain (scale with pixels)
18
- obj_pw: 1.0 # obj BCELoss positive_weight
19
- iou_t: 0.20 # IoU training threshold
20
- anchor_t: 4.0 # anchor-multiple threshold
21
- # anchors: 3 # anchors per output layer (0 to ignore)
22
- fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
23
- hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
24
- hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
25
- hsv_v: 0.4 # image HSV-Value augmentation (fraction)
26
- degrees: 0.0 # image rotation (+/- deg)
27
- translate: 0.1 # image translation (+/- fraction)
28
- scale: 0.5 # image scale (+/- gain)
29
- shear: 0.0 # image shear (+/- deg)
30
- perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
31
- flipud: 0.0 # image flip up-down (probability)
32
- fliplr: 0.5 # image flip left-right (probability)
33
- mosaic: 1.0 # image mosaic (probability)
34
- mixup: 0.0 # image mixup (probability)
35
- copy_paste: 0.0 # segment copy-paste (probability)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/hyps/hyp.scratch-med.yaml DELETED
@@ -1,35 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- # Hyperparameters for medium-augmentation COCO training from scratch
4
- # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
5
- # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
6
-
7
- lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
8
- lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
9
- momentum: 0.937 # SGD momentum/Adam beta1
10
- weight_decay: 0.0005 # optimizer weight decay 5e-4
11
- warmup_epochs: 3.0 # warmup epochs (fractions ok)
12
- warmup_momentum: 0.8 # warmup initial momentum
13
- warmup_bias_lr: 0.1 # warmup initial bias lr
14
- box: 0.05 # box loss gain
15
- cls: 0.3 # cls loss gain
16
- cls_pw: 1.0 # cls BCELoss positive_weight
17
- obj: 0.7 # obj loss gain (scale with pixels)
18
- obj_pw: 1.0 # obj BCELoss positive_weight
19
- iou_t: 0.20 # IoU training threshold
20
- anchor_t: 4.0 # anchor-multiple threshold
21
- # anchors: 3 # anchors per output layer (0 to ignore)
22
- fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
23
- hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
24
- hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
25
- hsv_v: 0.4 # image HSV-Value augmentation (fraction)
26
- degrees: 0.0 # image rotation (+/- deg)
27
- translate: 0.1 # image translation (+/- fraction)
28
- scale: 0.9 # image scale (+/- gain)
29
- shear: 0.0 # image shear (+/- deg)
30
- perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
31
- flipud: 0.0 # image flip up-down (probability)
32
- fliplr: 0.5 # image flip left-right (probability)
33
- mosaic: 1.0 # image mosaic (probability)
34
- mixup: 0.1 # image mixup (probability)
35
- copy_paste: 0.0 # segment copy-paste (probability)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/images/bus.jpg DELETED

Git LFS Details

  • SHA256: 33b198a1d2839bb9ac4c65d61f9e852196793cae9a0781360859425f6022b69c
  • Pointer size: 131 Bytes
  • Size of remote file: 487 kB
yolov5/data/images/zidane.jpg DELETED

Git LFS Details

  • SHA256: 356dad2107bb0254e4e4a81bc1d9c7140043e88569d546e5b404b19bffa77d0a
  • Pointer size: 131 Bytes
  • Size of remote file: 169 kB
yolov5/data/scripts/download_weights.sh DELETED
@@ -1,23 +0,0 @@
1
- #!/bin/bash
2
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
3
-
4
- # Download latest models from https://github.com/ultralytics/yolov5/releases
5
- # Example usage: bash data/scripts/download_weights.sh
6
- # parent
7
- # └── yolov5
8
- # ├── yolov5s.pt ← downloads here
9
- # ├── yolov5m.pt
10
- # └── ...
11
-
12
- python - <<EOF
13
- from utils.downloads import attempt_download
14
-
15
- p5 = list('nsmlx') # P5 models
16
- p6 = [f'{x}6' for x in p5] # P6 models
17
- cls = [f'{x}-cls' for x in p5] # classification models
18
- seg = [f'{x}-seg' for x in p5] # classification models
19
-
20
- for x in p5 + p6 + cls + seg:
21
- attempt_download(f'weights/yolov5{x}.pt')
22
-
23
- EOF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/scripts/get_coco.sh DELETED
@@ -1,57 +0,0 @@
1
- #!/bin/bash
2
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
3
-
4
- # Download COCO 2017 dataset http://cocodataset.org
5
- # Example usage: bash data/scripts/get_coco.sh
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── coco ← downloads here
10
-
11
- # Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
12
- if [ "$#" -gt 0 ]; then
13
- for opt in "$@"; do
14
- case "${opt}" in
15
- --train) train=true ;;
16
- --val) val=true ;;
17
- --test) test=true ;;
18
- --segments) segments=true ;;
19
- esac
20
- done
21
- else
22
- train=true
23
- val=true
24
- test=false
25
- segments=false
26
- fi
27
-
28
- # Download/unzip labels
29
- d='../datasets' # unzip directory
30
- url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
31
- if [ "$segments" == "true" ]; then
32
- f='coco2017labels-segments.zip' # 168 MB
33
- else
34
- f='coco2017labels.zip' # 46 MB
35
- fi
36
- echo 'Downloading' $url$f ' ...'
37
- curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
38
-
39
- # Download/unzip images
40
- d='../datasets/coco/images' # unzip directory
41
- url=http://images.cocodataset.org/zips/
42
- if [ "$train" == "true" ]; then
43
- f='train2017.zip' # 19G, 118k images
44
- echo 'Downloading' $url$f '...'
45
- curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
46
- fi
47
- if [ "$val" == "true" ]; then
48
- f='val2017.zip' # 1G, 5k images
49
- echo 'Downloading' $url$f '...'
50
- curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
51
- fi
52
- if [ "$test" == "true" ]; then
53
- f='test2017.zip' # 7G, 41k images (optional)
54
- echo 'Downloading' $url$f '...'
55
- curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
56
- fi
57
- wait # finish background tasks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/scripts/get_coco128.sh DELETED
@@ -1,18 +0,0 @@
1
- #!/bin/bash
2
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
3
-
4
- # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
5
- # Example usage: bash data/scripts/get_coco128.sh
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── coco128 ← downloads here
10
-
11
- # Download/unzip images and labels
12
- d='../datasets' # unzip directory
13
- url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
14
- f='coco128.zip' # or 'coco128-segments.zip', 68 MB
15
- echo 'Downloading' $url$f ' ...'
16
- curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
17
-
18
- wait # finish background tasks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/data/scripts/get_imagenet.sh DELETED
@@ -1,52 +0,0 @@
1
- #!/bin/bash
2
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
3
-
4
- # Download ILSVRC2012 ImageNet dataset https://image-net.org
5
- # Example usage: bash data/scripts/get_imagenet.sh
6
- # parent
7
- # ├── yolov5
8
- # └── datasets
9
- # └── imagenet ← downloads here
10
-
11
- # Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
12
- if [ "$#" -gt 0 ]; then
13
- for opt in "$@"; do
14
- case "${opt}" in
15
- --train) train=true ;;
16
- --val) val=true ;;
17
- esac
18
- done
19
- else
20
- train=true
21
- val=true
22
- fi
23
-
24
- # Make dir
25
- d='../datasets/imagenet' # unzip directory
26
- mkdir -p $d && cd $d
27
-
28
- # Download/unzip train
29
- if [ "$train" == "true" ]; then
30
- wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
31
- mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
32
- tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
33
- find . -name "*.tar" | while read NAME; do
34
- mkdir -p "${NAME%.tar}"
35
- tar -xf "${NAME}" -C "${NAME%.tar}"
36
- rm -f "${NAME}"
37
- done
38
- cd ..
39
- fi
40
-
41
- # Download/unzip val
42
- if [ "$val" == "true" ]; then
43
- wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
44
- mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
45
- wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
46
- fi
47
-
48
- # Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
49
- # rm train/n04266014/n04266014_10835.JPEG
50
-
51
- # TFRecords (optional)
52
- # wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt