Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,20 @@
|
|
1 |
-
import os
|
2 |
-
import pytesseract
|
3 |
-
|
4 |
-
# Tesseract path from environment variable
|
5 |
-
pytesseract.pytesseract.tesseract_cmd = os.getenv("TESSERACT_PATH", "/usr/bin/tesseract")
|
6 |
-
|
7 |
-
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
import cv2
|
11 |
-
import pytesseract
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
|
|
14 |
from ultralytics import YOLO
|
15 |
|
16 |
-
|
17 |
# Load model
|
18 |
model = YOLO("/home/user/app/best.pt")
|
19 |
|
20 |
# Label map
|
21 |
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"}
|
22 |
|
|
|
|
|
|
|
23 |
def process_frame(frame):
|
24 |
# Resize to YOLO input shape
|
25 |
input_img = cv2.resize(frame, (640, 640))
|
@@ -43,12 +38,13 @@ def process_frame(frame):
|
|
43 |
cv2.putText(input_img, f"{label}: {percent}", (x1, y1 - 10),
|
44 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
45 |
|
46 |
-
# OCR
|
47 |
cropped = frame[y1:y2, x1:x2] # Use original frame for OCR
|
48 |
if cropped.size > 0:
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
52 |
confidences.append(percent)
|
53 |
|
54 |
# Convert to PIL
|
@@ -84,9 +80,7 @@ interface = gr.Interface(
|
|
84 |
gr.Textbox(label="Confidence (%)")
|
85 |
],
|
86 |
title="YOLOv10n License Plate Detector (Bangla)",
|
87 |
-
description="Upload an image or video. Detects license plates and extracts Bangla text using
|
88 |
)
|
89 |
|
90 |
interface.launch()
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import cv2
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
from paddleocr import PaddleOCR # Import PaddleOCR
|
7 |
from ultralytics import YOLO
|
8 |
|
|
|
9 |
# Load model
|
10 |
model = YOLO("/home/user/app/best.pt")
|
11 |
|
12 |
# Label map
|
13 |
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"}
|
14 |
|
15 |
+
# Initialize PaddleOCR (for Bangla OCR)
|
16 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='bn') # For Bangla language
|
17 |
+
|
18 |
def process_frame(frame):
|
19 |
# Resize to YOLO input shape
|
20 |
input_img = cv2.resize(frame, (640, 640))
|
|
|
38 |
cv2.putText(input_img, f"{label}: {percent}", (x1, y1 - 10),
|
39 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
40 |
|
41 |
+
# OCR using PaddleOCR
|
42 |
cropped = frame[y1:y2, x1:x2] # Use original frame for OCR
|
43 |
if cropped.size > 0:
|
44 |
+
# Convert to RGB and run OCR
|
45 |
+
result = ocr.ocr(cropped, cls=True)
|
46 |
+
for line in result[0]:
|
47 |
+
extracted_texts.append(line[1]) # Get the detected text
|
48 |
confidences.append(percent)
|
49 |
|
50 |
# Convert to PIL
|
|
|
80 |
gr.Textbox(label="Confidence (%)")
|
81 |
],
|
82 |
title="YOLOv10n License Plate Detector (Bangla)",
|
83 |
+
description="Upload an image or video. Detects license plates and extracts Bangla text using PaddleOCR."
|
84 |
)
|
85 |
|
86 |
interface.launch()
|
|
|
|