|
|
|
"""Model validation metrics."""
|
|
|
|
import math
|
|
import warnings
|
|
from pathlib import Path
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
|
|
from utils import TryExcept, threaded
|
|
|
|
|
|
def fitness(x):
|
|
"""Calculates fitness of a model using weighted sum of metrics P, R, [email protected], [email protected]:0.95."""
|
|
w = [0.0, 0.0, 0.1, 0.9]
|
|
return (x[:, :4] * w).sum(1)
|
|
|
|
|
|
def smooth(y, f=0.05):
|
|
"""Applies box filter smoothing to array `y` with fraction `f`, yielding a smoothed array."""
|
|
nf = round(len(y) * f * 2) // 2 + 1
|
|
p = np.ones(nf // 2)
|
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0)
|
|
return np.convolve(yp, np.ones(nf) / nf, mode="valid")
|
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=".", names=(), eps=1e-16, prefix=""):
|
|
"""
|
|
Compute the average precision, given the recall and precision curves.
|
|
|
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
|
# Arguments
|
|
tp: True positives (nparray, nx1 or nx10).
|
|
conf: Objectness value from 0-1 (nparray).
|
|
pred_cls: Predicted object classes (nparray).
|
|
target_cls: True object classes (nparray).
|
|
plot: Plot precision-recall curve at [email protected]
|
|
save_dir: Plot save directory
|
|
# Returns
|
|
The average precision as computed in py-faster-rcnn.
|
|
"""
|
|
|
|
i = np.argsort(-conf)
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
|
|
|
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
|
nc = unique_classes.shape[0]
|
|
|
|
|
|
px, py = np.linspace(0, 1, 1000), []
|
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
|
for ci, c in enumerate(unique_classes):
|
|
i = pred_cls == c
|
|
n_l = nt[ci]
|
|
n_p = i.sum()
|
|
if n_p == 0 or n_l == 0:
|
|
continue
|
|
|
|
|
|
fpc = (1 - tp[i]).cumsum(0)
|
|
tpc = tp[i].cumsum(0)
|
|
|
|
|
|
recall = tpc / (n_l + eps)
|
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)
|
|
|
|
|
|
precision = tpc / (tpc + fpc)
|
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)
|
|
|
|
|
|
for j in range(tp.shape[1]):
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
|
if plot and j == 0:
|
|
py.append(np.interp(px, mrec, mpre))
|
|
|
|
|
|
f1 = 2 * p * r / (p + r + eps)
|
|
names = [v for k, v in names.items() if k in unique_classes]
|
|
names = dict(enumerate(names))
|
|
if plot:
|
|
plot_pr_curve(px, py, ap, Path(save_dir) / f"{prefix}PR_curve.png", names)
|
|
plot_mc_curve(px, f1, Path(save_dir) / f"{prefix}F1_curve.png", names, ylabel="F1")
|
|
plot_mc_curve(px, p, Path(save_dir) / f"{prefix}P_curve.png", names, ylabel="Precision")
|
|
plot_mc_curve(px, r, Path(save_dir) / f"{prefix}R_curve.png", names, ylabel="Recall")
|
|
|
|
i = smooth(f1.mean(0), 0.1).argmax()
|
|
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
|
tp = (r * nt).round()
|
|
fp = (tp / (p + eps) - tp).round()
|
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
"""Compute the average precision, given the recall and precision curves
|
|
# Arguments
|
|
recall: The recall curve (list)
|
|
precision: The precision curve (list)
|
|
# Returns
|
|
Average precision, precision curve, recall curve.
|
|
"""
|
|
|
|
mrec = np.concatenate(([0.0], recall, [1.0]))
|
|
mpre = np.concatenate(([1.0], precision, [0.0]))
|
|
|
|
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
|
|
|
|
|
method = "interp"
|
|
if method == "interp":
|
|
x = np.linspace(0, 1, 101)
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x)
|
|
else:
|
|
i = np.where(mrec[1:] != mrec[:-1])[0]
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
|
|
|
return ap, mpre, mrec
|
|
|
|
|
|
class ConfusionMatrix:
|
|
"""Generates and visualizes a confusion matrix for evaluating object detection classification performance."""
|
|
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
|
"""Initializes ConfusionMatrix with given number of classes, confidence, and IoU threshold."""
|
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
|
self.nc = nc
|
|
self.conf = conf
|
|
self.iou_thres = iou_thres
|
|
|
|
def process_batch(self, detections, labels):
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
|
|
Arguments:
|
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
|
Returns:
|
|
None, updates confusion matrix accordingly
|
|
"""
|
|
if detections is None:
|
|
gt_classes = labels.int()
|
|
for gc in gt_classes:
|
|
self.matrix[self.nc, gc] += 1
|
|
return
|
|
|
|
detections = detections[detections[:, 4] > self.conf]
|
|
gt_classes = labels[:, 0].int()
|
|
detection_classes = detections[:, 5].int()
|
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
|
|
|
x = torch.where(iou > self.iou_thres)
|
|
if x[0].shape[0]:
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
|
if x[0].shape[0] > 1:
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
else:
|
|
matches = np.zeros((0, 3))
|
|
|
|
n = matches.shape[0] > 0
|
|
m0, m1, _ = matches.transpose().astype(int)
|
|
for i, gc in enumerate(gt_classes):
|
|
j = m0 == i
|
|
if n and sum(j) == 1:
|
|
self.matrix[detection_classes[m1[j]], gc] += 1
|
|
else:
|
|
self.matrix[self.nc, gc] += 1
|
|
|
|
if n:
|
|
for i, dc in enumerate(detection_classes):
|
|
if not any(m1 == i):
|
|
self.matrix[dc, self.nc] += 1
|
|
|
|
def tp_fp(self):
|
|
"""Calculates true positives (tp) and false positives (fp) excluding the background class from the confusion
|
|
matrix.
|
|
"""
|
|
tp = self.matrix.diagonal()
|
|
fp = self.matrix.sum(1) - tp
|
|
|
|
return tp[:-1], fp[:-1]
|
|
|
|
@TryExcept("WARNING β οΈ ConfusionMatrix plot failure")
|
|
def plot(self, normalize=True, save_dir="", names=()):
|
|
"""Plots confusion matrix using seaborn, optional normalization; can save plot to specified directory."""
|
|
import seaborn as sn
|
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)
|
|
array[array < 0.005] = np.nan
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
|
nc, nn = self.nc, len(names)
|
|
sn.set(font_scale=1.0 if nc < 50 else 0.8)
|
|
labels = (0 < nn < 99) and (nn == nc)
|
|
ticklabels = (names + ["background"]) if labels else "auto"
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
sn.heatmap(
|
|
array,
|
|
ax=ax,
|
|
annot=nc < 30,
|
|
annot_kws={"size": 8},
|
|
cmap="Blues",
|
|
fmt=".2f",
|
|
square=True,
|
|
vmin=0.0,
|
|
xticklabels=ticklabels,
|
|
yticklabels=ticklabels,
|
|
).set_facecolor((1, 1, 1))
|
|
ax.set_xlabel("True")
|
|
ax.set_ylabel("Predicted")
|
|
ax.set_title("Confusion Matrix")
|
|
fig.savefig(Path(save_dir) / "confusion_matrix.png", dpi=250)
|
|
plt.close(fig)
|
|
|
|
def print(self):
|
|
"""Prints the confusion matrix row-wise, with each class and its predictions separated by spaces."""
|
|
for i in range(self.nc + 1):
|
|
print(" ".join(map(str, self.matrix[i])))
|
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
|
"""
|
|
Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats.
|
|
|
|
Input shapes are box1(1,4) to box2(n,4).
|
|
"""
|
|
|
|
if xywh:
|
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
|
else:
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
|
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
|
|
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
|
|
|
|
|
|
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * (
|
|
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
|
|
).clamp(0)
|
|
|
|
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
|
|
iou = inter / union
|
|
if CIoU or DIoU or GIoU:
|
|
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)
|
|
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)
|
|
if CIoU or DIoU:
|
|
c2 = cw**2 + ch**2 + eps
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4
|
|
if CIoU:
|
|
v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
|
with torch.no_grad():
|
|
alpha = v / (v - iou + (1 + eps))
|
|
return iou - (rho2 / c2 + v * alpha)
|
|
return iou - rho2 / c2
|
|
c_area = cw * ch + eps
|
|
return iou - (c_area - union) / c_area
|
|
return iou
|
|
|
|
|
|
def box_iou(box1, box2, eps=1e-7):
|
|
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
|
|
Arguments:
|
|
box1 (Tensor[N, 4])
|
|
box2 (Tensor[M, 4])
|
|
|
|
Returns:
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
|
IoU values for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
|
|
|
|
|
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
|
|
|
|
|
def bbox_ioa(box1, box2, eps=1e-7):
|
|
"""
|
|
Returns the intersection over box2 area given box1, box2.
|
|
|
|
Boxes are x1y1x2y2
|
|
box1: np.array of shape(4)
|
|
box2: np.array of shape(nx4)
|
|
returns: np.array of shape(n)
|
|
"""
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
|
|
|
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * (
|
|
np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)
|
|
).clip(0)
|
|
|
|
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
|
|
|
|
|
return inter_area / box2_area
|
|
|
|
|
|
def wh_iou(wh1, wh2, eps=1e-7):
|
|
"""Calculates the Intersection over Union (IoU) for two sets of widths and heights; `wh1` and `wh2` should be nx2
|
|
and mx2 tensors.
|
|
"""
|
|
wh1 = wh1[:, None]
|
|
wh2 = wh2[None]
|
|
inter = torch.min(wh1, wh2).prod(2)
|
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps)
|
|
|
|
|
|
|
|
|
|
|
|
@threaded
|
|
def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=()):
|
|
"""Plots precision-recall curve, optionally per class, saving to `save_dir`; `px`, `py` are lists, `ap` is Nx2
|
|
array, `names` optional.
|
|
"""
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
py = np.stack(py, axis=1)
|
|
|
|
if 0 < len(names) < 21:
|
|
for i, y in enumerate(py.T):
|
|
ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}")
|
|
else:
|
|
ax.plot(px, py, linewidth=1, color="grey")
|
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color="blue", label=f"all classes {ap[:, 0].mean():.3f} [email protected]")
|
|
ax.set_xlabel("Recall")
|
|
ax.set_ylabel("Precision")
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
|
ax.set_title("Precision-Recall Curve")
|
|
fig.savefig(save_dir, dpi=250)
|
|
plt.close(fig)
|
|
|
|
|
|
@threaded
|
|
def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names=(), xlabel="Confidence", ylabel="Metric"):
|
|
"""Plots a metric-confidence curve for model predictions, supporting per-class visualization and smoothing."""
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
|
|
if 0 < len(names) < 21:
|
|
for i, y in enumerate(py):
|
|
ax.plot(px, y, linewidth=1, label=f"{names[i]}")
|
|
else:
|
|
ax.plot(px, py.T, linewidth=1, color="grey")
|
|
|
|
y = smooth(py.mean(0), 0.05)
|
|
ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
|
|
ax.set_xlabel(xlabel)
|
|
ax.set_ylabel(ylabel)
|
|
ax.set_xlim(0, 1)
|
|
ax.set_ylim(0, 1)
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
|
ax.set_title(f"{ylabel}-Confidence Curve")
|
|
fig.savefig(save_dir, dpi=250)
|
|
plt.close(fig)
|
|
|