|
import gradio as gr |
|
import torch |
|
import cv2 |
|
import pytesseract |
|
import numpy as np |
|
from PIL import Image |
|
import sys |
|
import os |
|
|
|
|
|
sys.path.append('/home/user/app/yolov5') |
|
from models.common import DetectMultiBackend |
|
|
|
|
|
model = DetectMultiBackend('/home/user/app/best(3).pt', device='cpu') |
|
model.eval() |
|
|
|
|
|
def process_frame(frame): |
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
img_tensor = torch.from_numpy(img).permute(2, 0, 1).float() / 255.0 |
|
img_tensor = img_tensor.unsqueeze(0) |
|
|
|
results = model(img_tensor, augment=False) |
|
results = model.nms(results)[0] |
|
|
|
extracted_texts = [] |
|
confidences = [] |
|
|
|
for det in results: |
|
x1, y1, x2, y2, conf, cls = det.tolist() |
|
if conf > 0.5: |
|
x1, y1, x2, y2 = map(int, (x1, y1, x2, y2)) |
|
cls = int(cls) |
|
|
|
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"} |
|
label = label_map.get(cls, "Unknown") |
|
percent = f"{conf * 100:.2f}%" |
|
|
|
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) |
|
cv2.putText(frame, f"{label}: {percent}", (x1, y1 - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) |
|
|
|
|
|
lp_crop = frame[y1:y2, x1:x2] |
|
gray = cv2.cvtColor(lp_crop, cv2.COLOR_BGR2GRAY) |
|
text = pytesseract.image_to_string(gray, config="--psm 6 -l ben") |
|
extracted_texts.append(text.strip()) |
|
confidences.append(percent) |
|
|
|
return frame, "\n".join(extracted_texts), ", ".join(confidences) |
|
|
|
|
|
def process_input(input_file): |
|
file_path = input_file.name |
|
|
|
if file_path.endswith(('.mp4', '.avi', '.mov')): |
|
cap = cv2.VideoCapture(file_path) |
|
ret, frame = cap.read() |
|
cap.release() |
|
if not ret: |
|
return None, "Couldn't read video", "" |
|
else: |
|
frame = cv2.imread(file_path) |
|
if frame is None: |
|
return None, "Invalid image", "" |
|
|
|
processed_frame, text, confidence = process_frame(frame) |
|
processed_pil = Image.fromarray(cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB)) |
|
return processed_pil, text, confidence |
|
|
|
|
|
interface = gr.Interface( |
|
fn=process_input, |
|
inputs=gr.File(type="file", label="Upload Image or Video"), |
|
outputs=[ |
|
gr.Image(type="pil", label="Detected Output"), |
|
gr.Textbox(label="Detected Text (Bangla)"), |
|
gr.Textbox(label="Confidence (%)") |
|
], |
|
title="YOLOv10n License Plate Detector (Bangla)", |
|
description="Upload an image or video. Detects plates and extracts Bangla text using OCR (CPU)." |
|
) |
|
|
|
interface.launch() |
|
|