File size: 2,772 Bytes
dd2ba72
 
 
 
1f353b4
 
 
 
dd2ba72
1f353b4
 
 
dd2ba72
1f353b4
 
 
dd2ba72
1f353b4
 
 
 
 
dd2ba72
1f353b4
 
dd2ba72
1f353b4
 
 
 
 
 
 
 
dd2ba72
1f353b4
 
 
dd2ba72
1f353b4
 
 
 
dd2ba72
1f353b4
 
 
 
 
 
dd2ba72
1f353b4
dd2ba72
1f353b4
 
 
 
 
 
 
 
 
 
 
 
 
 
dd2ba72
1f353b4
 
 
dd2ba72
1f353b4
 
 
 
 
 
 
 
 
 
 
 
dd2ba72
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import torch
import cv2
import pytesseract
import numpy as np
from PIL import Image
import sys
import os

# Add YOLOv10 repo to path
sys.path.append('./YOLOv10')  # adjust path if needed
from models.common import DetectMultiBackend  # YOLOv10 model loader

# Load model
model = DetectMultiBackend('best(3).pt', device='cpu')  # your trained YOLOv10n model path
model.eval()

# Frame processing function
def process_frame(frame):
    img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    img_tensor = torch.from_numpy(img).permute(2, 0, 1).float() / 255.0
    img_tensor = img_tensor.unsqueeze(0)

    results = model(img_tensor, augment=False)
    results = model.nms(results)[0]

    extracted_texts = []
    confidences = []

    for det in results:
        x1, y1, x2, y2, conf, cls = det.tolist()
        if conf > 0.5:
            x1, y1, x2, y2 = map(int, (x1, y1, x2, y2))
            cls = int(cls)

            label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"}
            label = label_map.get(cls, "Unknown")
            percent = f"{conf * 100:.2f}%"

            # Draw box & label
            cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
            cv2.putText(frame, f"{label}: {percent}", (x1, y1 - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

            # OCR
            lp_crop = frame[y1:y2, x1:x2]
            gray = cv2.cvtColor(lp_crop, cv2.COLOR_BGR2GRAY)
            text = pytesseract.image_to_string(gray, config="--psm 6 -l ben")
            extracted_texts.append(text.strip())
            confidences.append(percent)

    return frame, "\n".join(extracted_texts), ", ".join(confidences)

# Input handler
def process_input(input_file):
    file_path = input_file.name

    if file_path.endswith(('.mp4', '.avi', '.mov')):
        cap = cv2.VideoCapture(file_path)
        ret, frame = cap.read()
        cap.release()
        if not ret:
            return None, "Couldn't read video", ""
    else:
        frame = cv2.imread(file_path)
        if frame is None:
            return None, "Invalid image", ""

    processed_frame, text, confidence = process_frame(frame)
    processed_pil = Image.fromarray(cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB))
    return processed_pil, text, confidence

# Gradio Interface
interface = gr.Interface(
    fn=process_input,
    inputs=gr.File(type="file", label="Upload Image or Video"),
    outputs=[
        gr.Image(type="pil", label="Detected Output"),
        gr.Textbox(label="Detected Text (Bangla)"),
        gr.Textbox(label="Confidence (%)")
    ],
    title="YOLOv10n License Plate Detector (Bangla)",
    description="Upload an image or video. Detects plates and extracts Bangla text using OCR (CPU)."
)

interface.launch()