|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path: ../datasets/VisDrone
|
|
train: VisDrone2019-DET-train/images
|
|
val: VisDrone2019-DET-val/images
|
|
test: VisDrone2019-DET-test-dev/images
|
|
|
|
|
|
names:
|
|
0: pedestrian
|
|
1: people
|
|
2: bicycle
|
|
3: car
|
|
4: van
|
|
5: truck
|
|
6: tricycle
|
|
7: awning-tricycle
|
|
8: bus
|
|
9: motor
|
|
|
|
|
|
download: |
|
|
import os
|
|
from pathlib import Path
|
|
|
|
from ultralytics.utils.downloads import download
|
|
|
|
def visdrone2yolo(dir):
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
def convert_box(size, box):
|
|
|
|
dw = 1. / size[0]
|
|
dh = 1. / size[1]
|
|
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
|
|
|
|
(dir / 'labels').mkdir(parents=True, exist_ok=True)
|
|
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
|
|
for f in pbar:
|
|
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
|
|
lines = []
|
|
with open(f, 'r') as file:
|
|
for row in [x.split(',') for x in file.read().strip().splitlines()]:
|
|
if row[4] == '0': # VisDrone 'ignored regions' class 0
|
|
continue
|
|
cls = int(row[5]) - 1
|
|
box = convert_box(img_size, tuple(map(int, row[:4])))
|
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
|
with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:
|
|
fl.writelines(lines)
|
|
|
|
|
|
|
|
dir = Path(yaml['path'])
|
|
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
|
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
|
download(urls, dir=dir, curl=True, threads=4)
|
|
|
|
|
|
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
|
visdrone2yolo(dir / d)
|
|
|