Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
from dotenv import load_dotenv
|
4 |
from datasets import load_dataset
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
@@ -8,15 +7,13 @@ from huggingface_hub import login
|
|
8 |
# === トークン読み込み ===
|
9 |
load_dotenv()
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
-
|
12 |
if not HF_TOKEN:
|
13 |
raise ValueError("Hugging Faceのトークンが見つかりません。`.env`ファイルまたは環境変数を確認してください。")
|
14 |
-
|
15 |
login(HF_TOKEN)
|
16 |
|
17 |
# === 設定 ===
|
18 |
-
BASE_MODEL = "Sakalti/
|
19 |
-
HF_REPO = "Sakalti/
|
20 |
|
21 |
# === データ読み込み ===
|
22 |
dataset = load_dataset("Verah/JParaCrawl-Filtered-English-Japanese-Parallel-Corpus", split="train")
|
@@ -25,12 +22,12 @@ dataset = load_dataset("Verah/JParaCrawl-Filtered-English-Japanese-Parallel-Corp
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
26 |
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
|
27 |
|
28 |
-
# ===
|
29 |
def preprocess(examples):
|
30 |
-
texts = [
|
31 |
-
|
32 |
-
|
33 |
-
return
|
34 |
|
35 |
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
|
36 |
|
@@ -42,7 +39,7 @@ training_args = TrainingArguments(
|
|
42 |
per_device_train_batch_size=2,
|
43 |
num_train_epochs=3,
|
44 |
save_total_limit=2,
|
45 |
-
save_steps=500,
|
46 |
push_to_hub=True,
|
47 |
hub_model_id=HF_REPO,
|
48 |
hub_token=HF_TOKEN,
|
|
|
1 |
import os
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
from datasets import load_dataset
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
|
|
7 |
# === トークン読み込み ===
|
8 |
load_dotenv()
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
10 |
if not HF_TOKEN:
|
11 |
raise ValueError("Hugging Faceのトークンが見つかりません。`.env`ファイルまたは環境変数を確認してください。")
|
|
|
12 |
login(HF_TOKEN)
|
13 |
|
14 |
# === 設定 ===
|
15 |
+
BASE_MODEL = "Sakalti/template-4" # 修正対象モデル名
|
16 |
+
HF_REPO = "Sakalti/template-16"
|
17 |
|
18 |
# === データ読み込み ===
|
19 |
dataset = load_dataset("Verah/JParaCrawl-Filtered-English-Japanese-Parallel-Corpus", split="train")
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
23 |
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
|
24 |
|
25 |
+
# === 超簡素トークナイズ関数 ===
|
26 |
def preprocess(examples):
|
27 |
+
texts = [ex["en"] + " " + ex["ja"] for ex in examples]
|
28 |
+
tokenized = tokenizer(texts, max_length=256, truncation=True)
|
29 |
+
tokenized["labels"] = tokenized["input_ids"].copy()
|
30 |
+
return tokenized
|
31 |
|
32 |
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
|
33 |
|
|
|
39 |
per_device_train_batch_size=2,
|
40 |
num_train_epochs=3,
|
41 |
save_total_limit=2,
|
42 |
+
save_steps=500,
|
43 |
push_to_hub=True,
|
44 |
hub_model_id=HF_REPO,
|
45 |
hub_token=HF_TOKEN,
|