Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
5 |
+
from huggingface_hub import login
|
6 |
+
|
7 |
+
# === トークン読み込み ===
|
8 |
+
load_dotenv()
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
+
|
11 |
+
if not HF_TOKEN:
|
12 |
+
raise ValueError("Hugging Faceのトークンが見つかりません。`.env`ファイルまたは環境変数を確認してください。")
|
13 |
+
|
14 |
+
login(HF_TOKEN)
|
15 |
+
|
16 |
+
# === 設定 ===
|
17 |
+
BASE_MODEL = "Sakalti/Template-4"
|
18 |
+
HF_REPO = "Sakalti/Template-4"
|
19 |
+
|
20 |
+
# === データ読み込み ===
|
21 |
+
dataset = load_dataset("Verah/JParaCrawl-Filtered-English-Japanese-Parallel-Corpus", split="train")
|
22 |
+
|
23 |
+
# === トークナイザー & モデル準備 ===
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
|
26 |
+
|
27 |
+
# === データ前処理 ===
|
28 |
+
def preprocess(examples):
|
29 |
+
texts = [f"英語: {ex['en']}\n日本語:" for ex in examples]
|
30 |
+
model_inputs = tokenizer(texts, max_length=256, truncation=True)
|
31 |
+
model_inputs["labels"] = model_inputs["input_ids"]
|
32 |
+
return model_inputs
|
33 |
+
|
34 |
+
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
|
35 |
+
|
36 |
+
# === トレーニング設定 ===
|
37 |
+
training_args = TrainingArguments(
|
38 |
+
output_dir="./results",
|
39 |
+
evaluation_strategy="no",
|
40 |
+
learning_rate=2e-5,
|
41 |
+
per_device_train_batch_size=2,
|
42 |
+
num_train_epochs=3,
|
43 |
+
save_total_limit=2,
|
44 |
+
save_steps=500, # 500ステップごとに保存(ご要望通り)
|
45 |
+
push_to_hub=True,
|
46 |
+
hub_model_id=HF_REPO,
|
47 |
+
hub_token=HF_TOKEN,
|
48 |
+
logging_steps=100,
|
49 |
+
)
|
50 |
+
|
51 |
+
# === Trainerで学習 & アップロード ===
|
52 |
+
trainer = Trainer(
|
53 |
+
model=model,
|
54 |
+
args=training_args,
|
55 |
+
train_dataset=tokenized_dataset,
|
56 |
+
)
|
57 |
+
|
58 |
+
trainer.train()
|
59 |
+
trainer.push_to_hub()
|
60 |
+
tokenizer.push_to_hub(HF_REPO)
|
61 |
+
|
62 |
+
print("アップロード完了!")
|