Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,64 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
# Import the correct exception class
|
4 |
-
from huggingface_hub.utils import HfHubHTTPError
|
5 |
-
import os
|
6 |
|
7 |
"""
|
8 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
-
|
10 |
-
**Note:** You might need to authenticate with Hugging Face for this to work reliably.
|
11 |
-
Run `huggingface-cli login` in your terminal or set the HUGGING_FACE_HUB_TOKEN environment variable.
|
12 |
-
Alternatively, pass your token directly: InferenceClient(token="hf_YOUR_TOKEN")
|
13 |
"""
|
14 |
-
|
15 |
-
# It will try to use HUGGING_FACE_HUB_TOKEN environment variable or cached login
|
16 |
-
try:
|
17 |
-
# You might need to provide a token if you haven't logged in via CLI
|
18 |
-
# token = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
19 |
-
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=token)
|
20 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
21 |
-
except Exception as e:
|
22 |
-
print(f"Error initializing InferenceClient: {e}")
|
23 |
-
raise ValueError("Could not initialize InferenceClient. Ensure you are logged in or provide a token.") from e
|
24 |
|
25 |
|
26 |
def respond(
|
27 |
-
message
|
28 |
-
history: list[tuple[str
|
29 |
-
system_message
|
30 |
-
max_tokens
|
31 |
-
temperature
|
32 |
-
top_p
|
33 |
):
|
34 |
-
"""
|
35 |
-
Generates a response using the Hugging Face Inference API.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
message: The user's input message.
|
39 |
-
history: A list of tuples representing the conversation history.
|
40 |
-
Each tuple is (user_message, bot_message).
|
41 |
-
system_message: The system prompt to guide the model.
|
42 |
-
max_tokens: The maximum number of new tokens to generate.
|
43 |
-
temperature: Controls randomness (higher = more random).
|
44 |
-
top_p: Nucleus sampling parameter.
|
45 |
-
|
46 |
-
Yields:
|
47 |
-
The generated response incrementally.
|
48 |
-
"""
|
49 |
messages = [{"role": "system", "content": system_message}]
|
50 |
|
51 |
-
|
52 |
-
for user_msg, bot_msg in history:
|
53 |
if user_msg:
|
54 |
messages.append({"role": "user", "content": user_msg})
|
55 |
-
if
|
56 |
-
messages.append({"role": "assistant", "content":
|
57 |
|
58 |
-
# Add the latest user message
|
59 |
messages.append({"role": "user", "content": message})
|
60 |
|
61 |
response = ""
|
62 |
-
try:
|
63 |
-
# Start streaming the response
|
64 |
-
for msg_chunk in client.chat_completion(
|
65 |
-
messages=messages,
|
66 |
-
max_tokens=max_tokens,
|
67 |
-
stream=True,
|
68 |
-
temperature=temperature,
|
69 |
-
top_p=top_p,
|
70 |
-
):
|
71 |
-
# Check if there's content in the delta
|
72 |
-
token = msg_chunk.choices[0].delta.content
|
73 |
-
if token: # Add check for empty/None token
|
74 |
-
response += token
|
75 |
-
yield response # Yield the accumulated response so far
|
76 |
-
|
77 |
-
# Catch HTTP errors from the Hugging Face Hub API
|
78 |
-
except HfHubHTTPError as e:
|
79 |
-
error_message = f"Inference API Error: {e}"
|
80 |
-
# Try to get more details from the response if available
|
81 |
-
if e.response:
|
82 |
-
try:
|
83 |
-
details = e.response.json()
|
84 |
-
error_message += f"\nDetails: {details.get('error', 'N/A')}"
|
85 |
-
except Exception: # Catch potential JSON decoding errors
|
86 |
-
pass # Keep the original error message
|
87 |
-
print(error_message)
|
88 |
-
yield f"Sorry, I encountered an error communicating with the model service: {e}" # Display a user-friendly message
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
"""
|
97 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
98 |
"""
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
additional_inputs=[
|
116 |
-
gr.Textbox(value="You are a friendly and helpful chatbot.", label="System message"),
|
117 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
118 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), # Note: Max temp often capped lower (e.g., 1.0 or 2.0)
|
119 |
-
gr.Slider(
|
120 |
-
minimum=0.1,
|
121 |
-
maximum=1.0,
|
122 |
-
value=0.95,
|
123 |
-
step=0.05,
|
124 |
-
label="Top-p (nucleus sampling)",
|
125 |
-
),
|
126 |
-
],
|
127 |
-
additional_inputs_accordion=gr.Accordion(label="Advanced Options", open=False), # Group additional inputs
|
128 |
-
)
|
129 |
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
-
# Ensure huggingface_hub library is up-to-date: pip install --upgrade huggingface_hub
|
133 |
-
print("Launching Gradio Interface...")
|
134 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
+
for user_msg, assistant_msg in history:
|
|
|
21 |
if user_msg:
|
22 |
messages.append({"role": "user", "content": user_msg})
|
23 |
+
if assistant_msg:
|
24 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
for event in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=int(max_tokens),
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
if event.token is not None:
|
38 |
+
response += event.token
|
39 |
+
yield response
|
40 |
|
41 |
|
42 |
"""
|
43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
"""
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
chatbot = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
|
|
|
|
64 |
demo.launch()
|