import gradio as gr import torch import torch.nn as nn import torchvision.transforms as transforms from PIL import Image import torch.nn.init as init class Fire(nn.Module): def __init__(self, inplanes: int, squeeze_planes: int, expand1x1_planes: int, expand3x3_planes: int) -> None: super().__init__() self.inplanes = inplanes self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) self.squeeze_activation = nn.ReLU(inplace=True) self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1) self.expand1x1_activation = nn.ReLU(inplace=True) self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1) self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.squeeze_activation(self.squeeze(x)) return torch.cat( [self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], 1 ) class SqueezeNet(nn.Module): def __init__(self, version: str = "1_0", num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() # _log_api_usage_once(self) self.num_classes = num_classes if version == "1_0": self.features = nn.Sequential( nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256), ) elif version == "middle": # 0.78 mb self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(32, 8, 32, 32), Fire(64, 8, 32, 32), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 24, 96, 96), Fire(192, 24, 96, 96), Fire(192, 32, 128, 128), Fire(256, 32, 128, 128), ) else: # FIXME: Is this needed? SqueezeNet should only be called from the # FIXME: squeezenet1_x() functions # FIXME: This checking is not done for the other models raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected") # Final convolution is initialized differently from the rest # 512 final_conv = nn.Conv2d(256, self.num_classes, kernel_size=1) self.classifier = nn.Sequential( nn.Dropout(p=dropout), final_conv, nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)) ) for m in self.modules(): if isinstance(m, nn.Conv2d): if m is final_conv: init.normal_(m.weight, mean=0.0, std=0.01) else: init.kaiming_uniform_(m.weight) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.classifier(x) return torch.flatten(x, 1) class SN(nn.Module): def __init__(self): super().__init__() self.model = SqueezeNet(version="middle", num_classes=2) def forward(self, x): return self.model(x) def predict(image): model = SN() model.load_state_dict(torch.load("./liveness_1M_model_0.8740054619288524 .ckpt", map_location=torch.device('cpu'))) im = Image.open(image) transform1 = transforms.Compose([transforms.Resize((512, 512)), transforms.ToTensor()]) img = transform1(im).unsqueeze(0) my_softmax = nn.Softmax(dim=1) with torch.no_grad(): y_hat = model(img) liveness_score = float(my_softmax(y_hat)[0][1]) res = {"fake": liveness_score, "real": 1 - liveness_score} return res gr.Interface( predict, inputs=gr.inputs.Image(label="Upload an image", type="filepath"), outputs=gr.outputs.Label(num_top_classes=2), title="Real or Fake", examples=["./2022-10-12 16.52.56.jpg", "./2022-10-12 16.54.52.jpg", "./1724477482.jpeg"] ).launch()