test / app.py
SaiChamakura's picture
Create app.py
092b806 verified
raw
history blame
6.87 kB
import gradio as gr
import os
import torch
import cadquery as cq
from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig
from PIL import Image
import ast # For safe evaluation of string-formatted lists
from io import BytesIO
# --- CONFIGURATION (Keep as constants) ---
MODEL_PATH = "/raid/home/posahemanth/miniconda3/Sai/FinalYearProject/1000_gpusoutput"
OUTPUT_DIRECTORY = "/raid/home/posahemanth/miniconda3/Sai/FinalYearProject/Gradio_Output" # Separate output
USE_FLASH_ATTENTION = True
PRE_TRAINED_MODEL_NAME = "microsoft/Phi-4-multimodal-instruct"
os.makedirs(OUTPUT_DIRECTORY, exist_ok=True) # Ensure the output directory exists
# --- MODEL LOADING (Global Scope) ---
# Load only once, outside the functions, to improve performance
try:
config = AutoConfig.from_pretrained(MODEL_PATH, trust_remote_code=True, local_files_only=True)
config.attn_implementation = "flash_attention_2" if USE_FLASH_ATTENTION else "sdpa"
config.num_logits_to_keep = 20
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
config=config,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if USE_FLASH_ATTENTION else torch.float32,
local_files_only=True
).to("cuda").eval() # .eval() is crucial for inference
processor = AutoProcessor.from_pretrained(
PRE_TRAINED_MODEL_NAME,
trust_remote_code=True,
local_files_only=False,
config=config,
)
except Exception as e:
print(f"Error loading model/processor: {e}")
raise # Re-raise to halt execution
# --- CAPTION GENERATION ---
def generate_caption(image):
"""Generates a caption for the given image."""
if image is None:
return "Please upload an image."
try:
# Convert numpy array to PIL Image
image = Image.fromarray(image).convert("RGB")
except Exception as e:
print(f"Error converting image: {e}")
return "Error processing image."
prompt = "Describe this image."
user_message = {'role': 'user', 'content': f'<|image_1|>{prompt}'}
prompt_tokenized = processor.tokenizer.apply_chat_template([user_message], tokenize=False, add_generation_prompt=True)
inputs = processor(prompt_tokenized, images=[image], return_tensors='pt').to("cuda")
try:
with torch.no_grad(): # Ensure no gradients are calculated
generated_ids = model.generate(
**inputs,
eos_token_id=processor.tokenizer.eos_token_id,
max_new_tokens=512,
num_logits_to_keep=20,
)
input_len = inputs.input_ids.size(1)
generated_text = processor.decode(
generated_ids[0, input_len:],
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
).strip()
except Exception as e:
print(f"Error during generation: {e}")
return "Error during caption generation."
return generated_text
# --- CAD MODEL BUILDING ---
def build_model(sequence):
"""Builds a CAD model from the sequence and returns the STEP file path."""
workplane = cq.Workplane("XY")
model = None
primitive = None
if isinstance(sequence, str):
try:
sequence = ast.literal_eval(sequence)
except (ValueError, SyntaxError):
return "Invalid sequence format. Could not convert to list."
if not isinstance(sequence, list):
return "Invalid sequence format. Expected a list."
elif not isinstance(sequence, list):
return "Invalid sequence format. Expected a list."
for step in sequence:
index = step[0]
if index == 0: # Cube
_, length, width, height, loc_x, loc_y, loc_z, axis = step
primitive = workplane.box(length, width, height).translate((loc_x, loc_y, loc_z))
elif index == 1: # Cylinder
_, height, radius, loc_x, loc_y, loc_z, axis = step
primitive = workplane.cylinder(radius, height).translate((loc_x, loc_y, loc_z))
elif index == 2: # Sphere
_, radius, loc_x, loc_y, loc_z, axis = step
primitive = workplane.sphere(radius).translate((loc_x, loc_y, loc_z))
if primitive is None:
print(f"Skipping step {step} because primitive was not initialized.")
continue
if index in [3, 4, 5]: # Operations
if model is None:
model = primitive
_, loc_x, loc_y, loc_z = step
if index == 3:
model = model.union(primitive.translate((loc_x, loc_y, loc_z)))
elif index == 4:
model = model.cut(primitive.translate((loc_x, loc_y, loc_z)))
elif index == 5:
model = model.intersect(primitive.translate((loc_x, loc_y, loc_z)))
if model is None:
model = primitive
if model is None:
return "Error: No valid CAD model was created."
# Create a unique filename using a timestamp (more robust)
import datetime
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
model_name = f"generated_model_{timestamp}"
step_file_path = os.path.join(OUTPUT_DIRECTORY, f"{model_name}.step")
cq.exporters.export(model, step_file_path)
return step_file_path
def process_image(image):
"""Combines caption generation and model building."""
if image is None:
return "Please upload an image first.", None
caption = generate_caption(image)
if not caption or caption.startswith("Error"):
return caption, None
step_file_path = build_model(caption)
if step_file_path.startswith("Error"):
return step_file_path, None
return "CAD model generated successfully!", step_file_path
# --- GRADIO INTERFACE ---
css = """
.container {
max-width: 800px;
margin: auto;
padding: 20px;
border: 2px solid #ddd;
border-radius: 10px;
}
h1 {
text-align: center;
color: #333;
}
.description {
text-align: center;
margin-bottom: 20px;
}
.input-section, .output-section {
margin-bottom: 20px;
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
}
.input-section h2, .output-section h2 {
margin-top: 0;
color: #555;
}
.output-section p {
font-weight: bold;
}
"""
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(label="Upload Image", type="numpy"),
outputs=[
gr.Textbox(label="Status"), # Show status messages
gr.File(label="Download STEP File") # Download link for the file
],
title="Image to CAD Converter",
description="Upload an image of a mechanical drawing, and this app will attempt to generate a corresponding STEP CAD file.",
css=css, # Apply the CSS
allow_flagging="never", # Disable flagging
theme=gr.themes.Soft()
)
iface.launch(share=True)