Update app.py
Browse files
app.py
CHANGED
@@ -88,11 +88,12 @@ def generate_activation_maps(image, patch_size=16):
|
|
88 |
img = np.array(image)
|
89 |
# make the image divisible by the patch size
|
90 |
w, h = img.shape[1] - img.shape[0] % patch_size, img.shape[1] - img.shape[1] % patch_size
|
91 |
-
|
|
|
92 |
print("Image shape:", img.shape)
|
93 |
preprocess = transforms.Compose([
|
94 |
transforms.Resize((img.shape[0], img.shape[1])),
|
95 |
-
transforms.CenterCrop(
|
96 |
transforms.ToTensor(),
|
97 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize the tensors
|
98 |
])
|
@@ -105,27 +106,29 @@ def generate_activation_maps(image, patch_size=16):
|
|
105 |
|
106 |
# Streamlit UI
|
107 |
st.title("PathDino - Compact ViT for Histopathology Image Analysis")
|
108 |
-
st.write("Upload a histology image
|
109 |
|
110 |
# uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
111 |
uploaded_image = "images/HistRotate.png"
|
112 |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
113 |
|
114 |
if uploaded_image is not None:
|
115 |
-
columns = st.columns(3)
|
116 |
-
|
117 |
|
118 |
# Load the image and apply preprocessing
|
119 |
uploaded_image = Image.open(uploaded_image).convert('RGB')
|
120 |
attention_list = generate_activation_maps(uploaded_image)
|
|
|
121 |
print(len(attention_list))
|
122 |
st.subheader(f"Attention Maps of the input image")
|
123 |
columns = st.columns(2)
|
124 |
columns2 = st.columns(2)
|
125 |
columns3 = st.columns(2)
|
|
|
126 |
for index, col in enumerate(columns):
|
127 |
# Create a plot
|
128 |
-
plt.plot(
|
129 |
|
130 |
# Remove x and y axis labels
|
131 |
plt.xticks([]) # Hide x-axis ticks and labels
|
@@ -134,16 +137,21 @@ if uploaded_image is not None:
|
|
134 |
# Alternatively, if you only want to hide the labels and keep the ticks:
|
135 |
plt.gca().axes.get_xaxis().set_visible(False)
|
136 |
plt.gca().axes.get_yaxis().set_visible(False)
|
|
|
|
|
|
|
137 |
|
138 |
plt.imshow(attention_list[index])
|
139 |
col.pyplot(plt)
|
|
|
|
|
140 |
plt.close()
|
141 |
|
142 |
for index, col in enumerate(columns2):
|
143 |
|
144 |
index = index + 2
|
145 |
# Create a plot
|
146 |
-
plt.plot(
|
147 |
|
148 |
# Remove x and y axis labels
|
149 |
plt.xticks([]) # Hide x-axis ticks and labels
|
@@ -161,7 +169,7 @@ if uploaded_image is not None:
|
|
161 |
|
162 |
index = index + 4
|
163 |
# Create a plot
|
164 |
-
plt.plot(
|
165 |
|
166 |
# Remove x and y axis labels
|
167 |
plt.xticks([]) # Hide x-axis ticks and labels
|
|
|
88 |
img = np.array(image)
|
89 |
# make the image divisible by the patch size
|
90 |
w, h = img.shape[1] - img.shape[0] % patch_size, img.shape[1] - img.shape[1] % patch_size
|
91 |
+
print("w, h:", w, h)
|
92 |
+
# min_size = min(w, h)
|
93 |
print("Image shape:", img.shape)
|
94 |
preprocess = transforms.Compose([
|
95 |
transforms.Resize((img.shape[0], img.shape[1])),
|
96 |
+
transforms.CenterCrop((w, h)),
|
97 |
transforms.ToTensor(),
|
98 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize the tensors
|
99 |
])
|
|
|
106 |
|
107 |
# Streamlit UI
|
108 |
st.title("PathDino - Compact ViT for Histopathology Image Analysis")
|
109 |
+
st.write("Upload a histology image to view the activation maps.")
|
110 |
|
111 |
# uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
112 |
uploaded_image = "images/HistRotate.png"
|
113 |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
114 |
|
115 |
if uploaded_image is not None:
|
116 |
+
# columns = st.columns(3)
|
117 |
+
st.image(uploaded_image, caption="Uploaded Image", width=500)
|
118 |
|
119 |
# Load the image and apply preprocessing
|
120 |
uploaded_image = Image.open(uploaded_image).convert('RGB')
|
121 |
attention_list = generate_activation_maps(uploaded_image)
|
122 |
+
|
123 |
print(len(attention_list))
|
124 |
st.subheader(f"Attention Maps of the input image")
|
125 |
columns = st.columns(2)
|
126 |
columns2 = st.columns(2)
|
127 |
columns3 = st.columns(2)
|
128 |
+
# for index in range(6):
|
129 |
for index, col in enumerate(columns):
|
130 |
# Create a plot
|
131 |
+
plt.plot(600, 600)
|
132 |
|
133 |
# Remove x and y axis labels
|
134 |
plt.xticks([]) # Hide x-axis ticks and labels
|
|
|
137 |
# Alternatively, if you only want to hide the labels and keep the ticks:
|
138 |
plt.gca().axes.get_xaxis().set_visible(False)
|
139 |
plt.gca().axes.get_yaxis().set_visible(False)
|
140 |
+
|
141 |
+
print(type(attention_list[index]))
|
142 |
+
print(attention_list[index].shape)
|
143 |
|
144 |
plt.imshow(attention_list[index])
|
145 |
col.pyplot(plt)
|
146 |
+
# col
|
147 |
+
# st.image(plt, caption=f"Head-{index+1}", width=display_w)
|
148 |
plt.close()
|
149 |
|
150 |
for index, col in enumerate(columns2):
|
151 |
|
152 |
index = index + 2
|
153 |
# Create a plot
|
154 |
+
plt.plot(600, 600)
|
155 |
|
156 |
# Remove x and y axis labels
|
157 |
plt.xticks([]) # Hide x-axis ticks and labels
|
|
|
169 |
|
170 |
index = index + 4
|
171 |
# Create a plot
|
172 |
+
plt.plot(600, 600)
|
173 |
|
174 |
# Remove x and y axis labels
|
175 |
plt.xticks([]) # Hide x-axis ticks and labels
|