Saghir commited on
Commit
3e2e594
·
1 Parent(s): 0e773bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -6
app.py CHANGED
@@ -16,23 +16,33 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
  # Load PathDino model and image transforms
17
  model, image_transforms = get_pathDino_model("PathDino512.pth")
18
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  st.sidebar.markdown("### PathDino")
21
  st.sidebar.markdown(
22
- "PathDino is a lightweight histology transformer consisting of just five small vision transformer blocks. "
23
- "PathDino is a customized ViT architecture, finely tuned to the nuances of histological images. It not only exhibits "
24
  "superior performance but also effectively reduces susceptibility to overfitting, a common challenge in histology "
25
  "image analysis.\n\n"
26
  )
27
 
28
  default_image_url_compare = "images/HistRotate.png"
29
- st.sidebar.image(default_image_url_compare, caption='A 360 rotation augmentation for training models on histopathology images. Unlike training on natural images where the rotation may change the context of the visual data, rotating a histopathology patch does not change the context and it improves the learning process for better reliable embedding learning.', width=500)
30
 
31
  default_image_url_compare = "images/FigPathDino_parameters_FLOPs_compare.png"
32
- st.sidebar.image(default_image_url_compare, caption='PathDino Vs its counterparts. Number of Parameters (Millions) vs the patch-level retrieval with macro avg F-score of majority vote (MV@5) on CAMELYON16 dataset. The bubble size represents the FLOPs.', width=500)
33
 
34
  default_image_url_compare = "images/ActivationMap.png"
35
- st.sidebar.image(default_image_url_compare, caption='Attention Visualization. When visualizing attention patterns, our PathDino transformer outperforms HIPT-small and DinoSSLPath, despite being trained on a smaller dataset of 6 million TCGA patches. In contrast, DinoSSLPath and HIPT were trained on much larger datasets, with 19 million and 104 million TCGA patches, respectively.', width=500)
36
 
37
 
38
 
@@ -67,7 +77,7 @@ def generate_activation_maps(image):
67
  return attention_list
68
 
69
  # Streamlit UI
70
- st.title("PathDino - Compact ViT for Histolopathology Image Analysis")
71
  st.write("Upload a histology image to view the activation maps.")
72
 
73
  # uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
 
16
  # Load PathDino model and image transforms
17
  model, image_transforms = get_pathDino_model("PathDino512.pth")
18
 
19
+ # Increase the width of the sidebar
20
+ st.write(
21
+ f"""
22
+ <style>
23
+ .sidebar .sidebar-content {{
24
+ width: 420px;
25
+ }}
26
+ </style>
27
+ """
28
+ )
29
 
30
  st.sidebar.markdown("### PathDino")
31
  st.sidebar.markdown(
32
+ "PathDino is a lightweight Histopathology transformer consisting of just five small vision transformer blocks. "
33
+ "PathDino is a customized ViT architecture, finely tuned to the nuances of histology images. It not only exhibits "
34
  "superior performance but also effectively reduces susceptibility to overfitting, a common challenge in histology "
35
  "image analysis.\n\n"
36
  )
37
 
38
  default_image_url_compare = "images/HistRotate.png"
39
+ st.sidebar.image(default_image_url_compare, caption='A 360 rotation augmentation for training models on histopathology images. Unlike training on natural images where the rotation may change the context of the visual data, rotating a histopathology patch does not change the context and it improves the learning process for better reliable embedding learning.', width=300)
40
 
41
  default_image_url_compare = "images/FigPathDino_parameters_FLOPs_compare.png"
42
+ st.sidebar.image(default_image_url_compare, caption='PathDino Vs its counterparts. Number of Parameters (Millions) vs the patch-level retrieval with macro avg F-score of majority vote (MV@5) on CAMELYON16 dataset. The bubble size represents the FLOPs.', width=300)
43
 
44
  default_image_url_compare = "images/ActivationMap.png"
45
+ st.sidebar.image(default_image_url_compare, caption='Attention Visualization. When visualizing attention patterns, our PathDino transformer outperforms HIPT-small and DinoSSLPath, despite being trained on a smaller dataset of 6 million TCGA patches. In contrast, DinoSSLPath and HIPT were trained on much larger datasets, with 19 million and 104 million TCGA patches, respectively.', width=300)
46
 
47
 
48
 
 
77
  return attention_list
78
 
79
  # Streamlit UI
80
+ st.title("PathDino - Compact ViT for Histopathology Image Analysis")
81
  st.write("Upload a histology image to view the activation maps.")
82
 
83
  # uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])