# -*- coding: utf-8 -*- """logistic_regression.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1-Slk6y5-E3eUnmM4vjtoRrGMoIKvD0hU # Logistic Regression ## Importing the libraries """ import numpy as np import matplotlib.pyplot as plt import pandas as pd """## Importing the dataset""" dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values """## Splitting the dataset into the Training set and Test set""" from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) print(X_train) print(y_train) print(X_test) print(y_test) """## Feature Scaling""" from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) print(X_train) print(X_test) """## Training the Logistic Regression model on the Training set""" from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train) """## Predicting a new result""" print(classifier.predict(sc.transform([[30,87000]]))) """## Predicting the Test set results""" y_pred = classifier.predict(X_test) print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1)) """## Making the Confusion Matrix""" from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_pred) print(cm) accuracy_score(y_test, y_pred) """## Visualising the Training set results""" from matplotlib.colors import ListedColormap X_set, y_set = sc.inverse_transform(X_train), y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('salmon', 'dodgerblue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('salmon', 'dodgerblue'))(i), label = j) plt.title('Logistic Regression (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() """## Visualising the Test set results""" from matplotlib.colors import ListedColormap X_set, y_set = sc.inverse_transform(X_test), y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('salmon', 'dodgerblue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('salmon', 'dodgerblue'))(i), label = j) plt.title('Logistic Regression (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()