SagarManchekar commited on
Commit
75004a2
·
1 Parent(s): 46d90b6

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -39
app.py DELETED
@@ -1,39 +0,0 @@
1
- # Simple Linear Regression
2
-
3
- # Importing the libraries
4
- import numpy as np
5
- import matplotlib.pyplot as plt
6
- import pandas as pd
7
-
8
- # Importing the dataset
9
- dataset = pd.read_csv('Salary_Data.csv')
10
- X = dataset.iloc[:, :-1].values
11
- y = dataset.iloc[:, -1].values
12
-
13
- # Splitting the dataset into the Training set and Test set
14
- from sklearn.model_selection import train_test_split
15
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
16
-
17
- # Training the Simple Linear Regression model on the Training set
18
- from sklearn.linear_model import LinearRegression
19
- regressor = LinearRegression()
20
- regressor.fit(X_train, y_train)
21
-
22
- # Predicting the Test set results
23
- y_pred = regressor.predict(X_test)
24
-
25
- # Visualising the Training set results
26
- plt.scatter(X_train, y_train, color = 'red')
27
- plt.plot(X_train, regressor.predict(X_train), color = 'blue')
28
- plt.title('Salary vs Experience (Training set)')
29
- plt.xlabel('Years of Experience')
30
- plt.ylabel('Salary')
31
- plt.show()
32
-
33
- # Visualising the Test set results
34
- plt.scatter(X_test, y_test, color = 'red')
35
- plt.plot(X_train, regressor.predict(X_train), color = 'blue')
36
- plt.title('Salary vs Experience (Test set)')
37
- plt.xlabel('Years of Experience')
38
- plt.ylabel('Salary')
39
- plt.show()