SaffalPoosh Andyx commited on
Commit
a547607
·
0 Parent(s):

Duplicate from ECCV2022/Screen_Image_Demoireing

Browse files

Co-authored-by: Andy <[email protected]>

Files changed (12) hide show
  1. .gitattributes +3 -0
  2. 001.jpg +3 -0
  3. 002.jpg +3 -0
  4. 003.jpg +3 -0
  5. 004.jpg +3 -0
  6. 005.jpg +3 -0
  7. QR.jpg +3 -0
  8. README.md +13 -0
  9. app.py +102 -0
  10. mix.pth +3 -0
  11. model/nets.py +259 -0
  12. requirements.txt +6 -0
.gitattributes ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ *.pth filter=lfs diff=lfs merge=lfs -text
2
+ *.jpg filter=lfs diff=lfs merge=lfs -text
3
+ .jpg filter=lfs diff=lfs merge=lfs -text
001.jpg ADDED

Git LFS Details

  • SHA256: a57fa193ce0c4e532f9ce55169eee2f83475b0422485744fa82a3ae3abfcc3b6
  • Pointer size: 132 Bytes
  • Size of remote file: 5.07 MB
002.jpg ADDED

Git LFS Details

  • SHA256: b9181c80dd860b54fbc8da4dee1565aeffb5c55b24fd2d5a819edf13ba4a2993
  • Pointer size: 132 Bytes
  • Size of remote file: 4.8 MB
003.jpg ADDED

Git LFS Details

  • SHA256: 03d8605cf8d695d775a1c4fe172e6313447cf74a34fa9272f168df13ffb04d09
  • Pointer size: 132 Bytes
  • Size of remote file: 4.84 MB
004.jpg ADDED

Git LFS Details

  • SHA256: 9ac79dfac7ab723dd3f07589aa7ae7e680ee22c6a37800bd79cce6cd82940c35
  • Pointer size: 129 Bytes
  • Size of remote file: 8.12 kB
005.jpg ADDED

Git LFS Details

  • SHA256: 3213c47088e5d0e78a23a1e51abc9d3ce202b16524705d2a7a54cf91a6979819
  • Pointer size: 129 Bytes
  • Size of remote file: 7.75 kB
QR.jpg ADDED

Git LFS Details

  • SHA256: 9c6c608e6c2011d0dbeefc95e28867f24dad21e2a8b94b0557de60f209b50076
  • Pointer size: 130 Bytes
  • Size of remote file: 37.5 kB
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Screen Image Demoireing
3
+ emoji: ⚡
4
+ colorFrom: purple
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.1.1
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: ECCV2022/Screen_Image_Demoireing
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from model.nets import my_model
3
+ import torch
4
+ import cv2
5
+ import torch.utils.data as data
6
+ import torchvision.transforms as transforms
7
+ import PIL
8
+ from PIL import Image
9
+ from PIL import ImageFile
10
+ import math
11
+ import os
12
+ import torch.nn.functional as F
13
+
14
+ os.environ["CUDA_VISIBLE_DEVICES"] = "1"
15
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
16
+ model1 = my_model(en_feature_num=48,
17
+ en_inter_num=32,
18
+ de_feature_num=64,
19
+ de_inter_num=32,
20
+ sam_number=1,
21
+ ).to(device)
22
+
23
+ load_path1 = "./mix.pth"
24
+ model_state_dict1 = torch.load(load_path1, map_location=device)
25
+ model1.load_state_dict(model_state_dict1)
26
+
27
+
28
+ def default_toTensor(img):
29
+ t_list = [transforms.ToTensor()]
30
+ composed_transform = transforms.Compose(t_list)
31
+ return composed_transform(img)
32
+
33
+ def predict1(img):
34
+ in_img = transforms.ToTensor()(img).to(device).unsqueeze(0)
35
+ b, c, h, w = in_img.size()
36
+ # pad image such that the resolution is a multiple of 32
37
+ w_pad = (math.ceil(w / 32) * 32 - w) // 2
38
+ w_odd_pad = w_pad
39
+ h_pad = (math.ceil(h / 32) * 32 - h) // 2
40
+ h_odd_pad = h_pad
41
+
42
+ if w % 2 == 1:
43
+ w_odd_pad += 1
44
+ if h % 2 == 1:
45
+ h_odd_pad += 1
46
+
47
+ in_img = img_pad(in_img, w_pad=w_pad, h_pad=h_pad, w_odd_pad=w_odd_pad, h_odd_pad=h_odd_pad)
48
+ with torch.no_grad():
49
+ out_1, out_2, out_3 = model1(in_img)
50
+ if h_pad != 0:
51
+ out_1 = out_1[:, :, h_pad:-h_odd_pad, :]
52
+ if w_pad != 0:
53
+ out_1 = out_1[:, :, :, w_pad:-w_odd_pad]
54
+ out_1 = out_1.squeeze(0)
55
+ out_1 = PIL.Image.fromarray(torch.clamp(out_1 * 255, min=0, max=255
56
+ ).byte().permute(1, 2, 0).cpu().numpy())
57
+
58
+ return out_1
59
+
60
+ def img_pad(x, w_pad, h_pad, w_odd_pad, h_odd_pad):
61
+ '''
62
+ Here the padding values are determined by the average r,g,b values across the training set
63
+ in FHDMi dataset. For the evaluation on the UHDM, you can also try the commented lines where
64
+ the mean values are calculated from UHDM training set, yielding similar performance.
65
+ '''
66
+ x1 = F.pad(x[:, 0:1, ...], (w_pad, w_odd_pad, h_pad, h_odd_pad), value=0.3827)
67
+ x2 = F.pad(x[:, 1:2, ...], (w_pad, w_odd_pad, h_pad, h_odd_pad), value=0.4141)
68
+ x3 = F.pad(x[:, 2:3, ...], (w_pad, w_odd_pad, h_pad, h_odd_pad), value=0.3912)
69
+
70
+ y = torch.cat([x1, x2, x3], dim=1)
71
+
72
+ return y
73
+
74
+
75
+ title = "Clean Your Moire Images!"
76
+ description = " The model was trained to remove the moire patterns from your captured screen images! Specially, this model is capable of tackling \
77
+ images up to 4K resolution, which adapts to most of the modern mobile phones. \
78
+ <br /> \
79
+ (Note: It may cost 80s per 4K image (e.g., iPhone's resolution: 4032x3024) since this demo runs on the CPU. The model can run \
80
+ on a NVIDIA 3090 GPU 17ms per standard 4K image). \
81
+ <br /> \
82
+ The best way for a demo testing is using your mobile phone to capture a screen image, which may cause moire patterns. \
83
+ You can scan the [QR code](https://github.com/CVMI-Lab/UHDM/blob/main/figures/QR.jpg) to play on your mobile phone. "
84
+
85
+ article = "Check out the [ECCV 2022 paper](https://arxiv.org/abs/2207.09935) and the \
86
+ [official training code](https://github.com/CVMI-Lab/UHDM) which the demo is based on.\
87
+ <center><img src='https://visitor-badge.glitch.me/badge?page_id=Andyx_screen_image_demoire' alt='visitor badge'></center>"
88
+
89
+
90
+ iface1 = gr.Interface(fn=predict1,
91
+ inputs=gr.inputs.Image(type="pil"),
92
+ outputs=gr.inputs.Image(type="pil"),
93
+ examples=['001.jpg',
94
+ '002.jpg',
95
+ '005.jpg'],
96
+ title = title,
97
+ description = description,
98
+ article = article
99
+ )
100
+
101
+
102
+ iface1.launch()
mix.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdcdd33f11e1d5eb836671f15991ecb42134bd5ba98c1e4de3b8e2f4138fdb2b
3
+ size 23895301
model/nets.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of ESDNet for image demoireing
3
+ """
4
+
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ import torchvision
10
+ from torch.nn.parameter import Parameter
11
+
12
+ class my_model(nn.Module):
13
+ def __init__(self,
14
+ en_feature_num,
15
+ en_inter_num,
16
+ de_feature_num,
17
+ de_inter_num,
18
+ sam_number=1,
19
+ ):
20
+ super(my_model, self).__init__()
21
+ self.encoder = Encoder(feature_num=en_feature_num, inter_num=en_inter_num, sam_number=sam_number)
22
+ self.decoder = Decoder(en_num=en_feature_num, feature_num=de_feature_num, inter_num=de_inter_num,
23
+ sam_number=sam_number)
24
+
25
+ def forward(self, x):
26
+ y_1, y_2, y_3 = self.encoder(x)
27
+ out_1, out_2, out_3 = self.decoder(y_1, y_2, y_3)
28
+
29
+ return out_1, out_2, out_3
30
+
31
+ def _initialize_weights(self):
32
+ for m in self.modules():
33
+ if isinstance(m, nn.Conv2d):
34
+ m.weight.data.normal_(0.0, 0.02)
35
+ if m.bias is not None:
36
+ m.bias.data.normal_(0.0, 0.02)
37
+ if isinstance(m, nn.ConvTranspose2d):
38
+ m.weight.data.normal_(0.0, 0.02)
39
+
40
+
41
+ class Decoder(nn.Module):
42
+ def __init__(self, en_num, feature_num, inter_num, sam_number):
43
+ super(Decoder, self).__init__()
44
+ self.preconv_3 = conv_relu(4 * en_num, feature_num, 3, padding=1)
45
+ self.decoder_3 = Decoder_Level(feature_num, inter_num, sam_number)
46
+
47
+ self.preconv_2 = conv_relu(2 * en_num + feature_num, feature_num, 3, padding=1)
48
+ self.decoder_2 = Decoder_Level(feature_num, inter_num, sam_number)
49
+
50
+ self.preconv_1 = conv_relu(en_num + feature_num, feature_num, 3, padding=1)
51
+ self.decoder_1 = Decoder_Level(feature_num, inter_num, sam_number)
52
+
53
+ def forward(self, y_1, y_2, y_3):
54
+ x_3 = y_3
55
+ x_3 = self.preconv_3(x_3)
56
+ out_3, feat_3 = self.decoder_3(x_3)
57
+
58
+ x_2 = torch.cat([y_2, feat_3], dim=1)
59
+ x_2 = self.preconv_2(x_2)
60
+ out_2, feat_2 = self.decoder_2(x_2)
61
+
62
+ x_1 = torch.cat([y_1, feat_2], dim=1)
63
+ x_1 = self.preconv_1(x_1)
64
+ out_1 = self.decoder_1(x_1, feat=False)
65
+
66
+ return out_1, out_2, out_3
67
+
68
+
69
+ class Encoder(nn.Module):
70
+ def __init__(self, feature_num, inter_num, sam_number):
71
+ super(Encoder, self).__init__()
72
+ self.conv_first = nn.Sequential(
73
+ nn.Conv2d(12, feature_num, kernel_size=5, stride=1, padding=2, bias=True),
74
+ nn.ReLU(inplace=True)
75
+ )
76
+ self.encoder_1 = Encoder_Level(feature_num, inter_num, level=1, sam_number=sam_number)
77
+ self.encoder_2 = Encoder_Level(2 * feature_num, inter_num, level=2, sam_number=sam_number)
78
+ self.encoder_3 = Encoder_Level(4 * feature_num, inter_num, level=3, sam_number=sam_number)
79
+
80
+ def forward(self, x):
81
+ x = F.pixel_unshuffle(x, 2)
82
+ x = self.conv_first(x)
83
+
84
+ out_feature_1, down_feature_1 = self.encoder_1(x)
85
+ out_feature_2, down_feature_2 = self.encoder_2(down_feature_1)
86
+ out_feature_3 = self.encoder_3(down_feature_2)
87
+
88
+ return out_feature_1, out_feature_2, out_feature_3
89
+
90
+
91
+ class Encoder_Level(nn.Module):
92
+ def __init__(self, feature_num, inter_num, level, sam_number):
93
+ super(Encoder_Level, self).__init__()
94
+ self.rdb = RDB(in_channel=feature_num, d_list=(1, 2, 1), inter_num=inter_num)
95
+ self.sam_blocks = nn.ModuleList()
96
+ for _ in range(sam_number):
97
+ sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
98
+ self.sam_blocks.append(sam_block)
99
+
100
+ if level < 3:
101
+ self.down = nn.Sequential(
102
+ nn.Conv2d(feature_num, 2 * feature_num, kernel_size=3, stride=2, padding=1, bias=True),
103
+ nn.ReLU(inplace=True)
104
+ )
105
+ self.level = level
106
+
107
+ def forward(self, x):
108
+ out_feature = self.rdb(x)
109
+ for sam_block in self.sam_blocks:
110
+ out_feature = sam_block(out_feature)
111
+ if self.level < 3:
112
+ down_feature = self.down(out_feature)
113
+ return out_feature, down_feature
114
+ return out_feature
115
+
116
+
117
+ class Decoder_Level(nn.Module):
118
+ def __init__(self, feature_num, inter_num, sam_number):
119
+ super(Decoder_Level, self).__init__()
120
+ self.rdb = RDB(feature_num, (1, 2, 1), inter_num)
121
+ self.sam_blocks = nn.ModuleList()
122
+ for _ in range(sam_number):
123
+ sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
124
+ self.sam_blocks.append(sam_block)
125
+ self.conv = conv(in_channel=feature_num, out_channel=12, kernel_size=3, padding=1)
126
+
127
+ def forward(self, x, feat=True):
128
+ x = self.rdb(x)
129
+ for sam_block in self.sam_blocks:
130
+ x = sam_block(x)
131
+ out = self.conv(x)
132
+ out = F.pixel_shuffle(out, 2)
133
+
134
+ if feat:
135
+ feature = F.interpolate(x, scale_factor=2, mode='bilinear')
136
+ return out, feature
137
+ else:
138
+ return out
139
+
140
+
141
+ class DB(nn.Module):
142
+ def __init__(self, in_channel, d_list, inter_num):
143
+ super(DB, self).__init__()
144
+ self.d_list = d_list
145
+ self.conv_layers = nn.ModuleList()
146
+ c = in_channel
147
+ for i in range(len(d_list)):
148
+ dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
149
+ padding=d_list[i])
150
+ self.conv_layers.append(dense_conv)
151
+ c = c + inter_num
152
+ self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
153
+
154
+ def forward(self, x):
155
+ t = x
156
+ for conv_layer in self.conv_layers:
157
+ _t = conv_layer(t)
158
+ t = torch.cat([_t, t], dim=1)
159
+ t = self.conv_post(t)
160
+ return t
161
+
162
+
163
+ class SAM(nn.Module):
164
+ def __init__(self, in_channel, d_list, inter_num):
165
+ super(SAM, self).__init__()
166
+ self.basic_block = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
167
+ self.basic_block_2 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
168
+ self.basic_block_4 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
169
+ self.fusion = CSAF(3 * in_channel)
170
+
171
+ def forward(self, x):
172
+ x_0 = x
173
+ x_2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
174
+ x_4 = F.interpolate(x, scale_factor=0.25, mode='bilinear')
175
+
176
+ y_0 = self.basic_block(x_0)
177
+ y_2 = self.basic_block_2(x_2)
178
+ y_4 = self.basic_block_4(x_4)
179
+
180
+ y_2 = F.interpolate(y_2, scale_factor=2, mode='bilinear')
181
+ y_4 = F.interpolate(y_4, scale_factor=4, mode='bilinear')
182
+
183
+ y = self.fusion(y_0, y_2, y_4)
184
+ y = x + y
185
+
186
+ return y
187
+
188
+
189
+ class CSAF(nn.Module):
190
+ def __init__(self, in_chnls, ratio=4):
191
+ super(CSAF, self).__init__()
192
+ self.squeeze = nn.AdaptiveAvgPool2d((1, 1))
193
+ self.compress1 = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0)
194
+ self.compress2 = nn.Conv2d(in_chnls // ratio, in_chnls // ratio, 1, 1, 0)
195
+ self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0)
196
+
197
+ def forward(self, x0, x2, x4):
198
+ out0 = self.squeeze(x0)
199
+ out2 = self.squeeze(x2)
200
+ out4 = self.squeeze(x4)
201
+ out = torch.cat([out0, out2, out4], dim=1)
202
+ out = self.compress1(out)
203
+ out = F.relu(out)
204
+ out = self.compress2(out)
205
+ out = F.relu(out)
206
+ out = self.excitation(out)
207
+ out = F.sigmoid(out)
208
+ w0, w2, w4 = torch.chunk(out, 3, dim=1)
209
+ x = x0 * w0 + x2 * w2 + x4 * w4
210
+
211
+ return x
212
+
213
+
214
+ class RDB(nn.Module):
215
+ def __init__(self, in_channel, d_list, inter_num):
216
+ super(RDB, self).__init__()
217
+ self.d_list = d_list
218
+ self.conv_layers = nn.ModuleList()
219
+ c = in_channel
220
+ for i in range(len(d_list)):
221
+ dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
222
+ padding=d_list[i])
223
+ self.conv_layers.append(dense_conv)
224
+ c = c + inter_num
225
+ self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
226
+
227
+ def forward(self, x):
228
+ t = x
229
+ for conv_layer in self.conv_layers:
230
+ _t = conv_layer(t)
231
+ t = torch.cat([_t, t], dim=1)
232
+
233
+ t = self.conv_post(t)
234
+ return t + x
235
+
236
+
237
+ class conv(nn.Module):
238
+ def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
239
+ super(conv, self).__init__()
240
+ self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
241
+ padding=padding, bias=True, dilation=dilation_rate)
242
+
243
+ def forward(self, x_input):
244
+ out = self.conv(x_input)
245
+ return out
246
+
247
+
248
+ class conv_relu(nn.Module):
249
+ def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
250
+ super(conv_relu, self).__init__()
251
+ self.conv = nn.Sequential(
252
+ nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
253
+ padding=padding, bias=True, dilation=dilation_rate),
254
+ nn.ReLU(inplace=True)
255
+ )
256
+
257
+ def forward(self, x_input):
258
+ out = self.conv(x_input)
259
+ return out
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ numpy==1.21.5
2
+ torch>=1.9.0
3
+ opencv-python==4.5.5.64
4
+ scikit-image==0.19.2
5
+ torchvision==0.1.8
6
+