File size: 6,072 Bytes
			
			| a22eb82 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | import torch
import torch.nn.functional as F
from torch import nn
from src.audio2pose_models.res_unet import ResUnet
def class2onehot(idx, class_num):
    assert torch.max(idx).item() < class_num
    onehot = torch.zeros(idx.size(0), class_num).to(idx.device)
    onehot.scatter_(1, idx, 1)
    return onehot
class CVAE(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES
        decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES
        latent_size = cfg.MODEL.CVAE.LATENT_SIZE
        num_classes = cfg.DATASET.NUM_CLASSES
        audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE
        audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE
        seq_len = cfg.MODEL.CVAE.SEQ_LEN
        self.latent_size = latent_size
        self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes,
                                audio_emb_in_size, audio_emb_out_size, seq_len)
        self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes,
                                audio_emb_in_size, audio_emb_out_size, seq_len)
    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std
    def forward(self, batch):
        batch = self.encoder(batch)
        mu = batch['mu']
        logvar = batch['logvar']
        z = self.reparameterize(mu, logvar)
        batch['z'] = z
        return self.decoder(batch)
    def test(self, batch):
        '''
        class_id = batch['class']
        z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device)
        batch['z'] = z
        '''
        return self.decoder(batch)
class ENCODER(nn.Module):
    def __init__(self, layer_sizes, latent_size, num_classes, 
                audio_emb_in_size, audio_emb_out_size, seq_len):
        super().__init__()
        self.resunet = ResUnet()
        self.num_classes = num_classes
        self.seq_len = seq_len
        self.MLP = nn.Sequential()
        layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6
        for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
            self.MLP.add_module(
                name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
            self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
        self.linear_means = nn.Linear(layer_sizes[-1], latent_size)
        self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size)
        self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
        self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
    def forward(self, batch):
        class_id = batch['class']
        pose_motion_gt = batch['pose_motion_gt']                             #bs seq_len 6
        ref = batch['ref']                             #bs 6
        bs = pose_motion_gt.shape[0]
        audio_in = batch['audio_emb']                          # bs seq_len audio_emb_in_size
        #pose encode
        pose_emb = self.resunet(pose_motion_gt.unsqueeze(1))          #bs 1 seq_len 6 
        pose_emb = pose_emb.reshape(bs, -1)                    #bs seq_len*6
        #audio mapping
        print(audio_in.shape)
        audio_out = self.linear_audio(audio_in)                # bs seq_len audio_emb_out_size
        audio_out = audio_out.reshape(bs, -1)
        class_bias = self.classbias[class_id]                  #bs latent_size
        x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) #bs seq_len*(audio_emb_out_size+6)+latent_size
        x_out = self.MLP(x_in)
        mu = self.linear_means(x_out)
        logvar = self.linear_means(x_out)                      #bs latent_size 
        batch.update({'mu':mu, 'logvar':logvar})
        return batch
class DECODER(nn.Module):
    def __init__(self, layer_sizes, latent_size, num_classes, 
                audio_emb_in_size, audio_emb_out_size, seq_len):
        super().__init__()
        self.resunet = ResUnet()
        self.num_classes = num_classes
        self.seq_len = seq_len
        self.MLP = nn.Sequential()
        input_size = latent_size + seq_len*audio_emb_out_size + 6
        for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)):
            self.MLP.add_module(
                name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
            if i+1 < len(layer_sizes):
                self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
            else:
                self.MLP.add_module(name="sigmoid", module=nn.Sigmoid())
        
        self.pose_linear = nn.Linear(6, 6)
        self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
        self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
    def forward(self, batch):
        z = batch['z']                                          #bs latent_size
        bs = z.shape[0]
        class_id = batch['class']
        ref = batch['ref']                             #bs 6
        audio_in = batch['audio_emb']                           # bs seq_len audio_emb_in_size
        #print('audio_in: ', audio_in[:, :, :10])
        audio_out = self.linear_audio(audio_in)                 # bs seq_len audio_emb_out_size
        #print('audio_out: ', audio_out[:, :, :10])
        audio_out = audio_out.reshape([bs, -1])                 # bs seq_len*audio_emb_out_size
        class_bias = self.classbias[class_id]                   #bs latent_size
        z = z + class_bias
        x_in = torch.cat([ref, z, audio_out], dim=-1)
        x_out = self.MLP(x_in)                                  # bs layer_sizes[-1]
        x_out = x_out.reshape((bs, self.seq_len, -1))
        #print('x_out: ', x_out)
        pose_emb = self.resunet(x_out.unsqueeze(1))             #bs 1 seq_len 6
        pose_motion_pred = self.pose_linear(pose_emb.squeeze(1))       #bs seq_len 6
        batch.update({'pose_motion_pred':pose_motion_pred})
        return batch
 | 
 
			
