Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tensorflow.keras.models import load_model
|
| 5 |
+
import tensorflow_addons as tfa
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5}
|
| 11 |
+
HEIGHT,WIDTH=224,224
|
| 12 |
+
NUM_CLASSES=6
|
| 13 |
+
|
| 14 |
+
model=load_model('Models/best_model1.h5')
|
| 15 |
+
|
| 16 |
+
# def classify_image(inp):
|
| 17 |
+
# np.random.seed(143)
|
| 18 |
+
# inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
|
| 19 |
+
# inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
| 20 |
+
# prediction = model.predict(inp)
|
| 21 |
+
# ###label = dict((v,k) for k,v in labels.items())
|
| 22 |
+
# predicted_class_indices=np.argmax(prediction,axis=1)
|
| 23 |
+
# result = {}
|
| 24 |
+
# for i in range(len(predicted_class_indices)):
|
| 25 |
+
# if predicted_class_indices[i] < NUM_CLASSES:
|
| 26 |
+
# result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
|
| 27 |
+
# return result
|
| 28 |
+
|
| 29 |
+
def classify_image(inp):
|
| 30 |
+
np.random.seed(143)
|
| 31 |
+
labels = {'Cat': 0, 'Dog': 1}
|
| 32 |
+
NUM_CLASSES = 2
|
| 33 |
+
inp = inp.reshape((-1, HEIGHT, WIDTH, 3))
|
| 34 |
+
inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
| 35 |
+
prediction = model.predict(inp)
|
| 36 |
+
predicted_class_indices = np.argmax(prediction, axis=1)
|
| 37 |
+
|
| 38 |
+
label_order = ["Cat","Dog"]
|
| 39 |
+
|
| 40 |
+
result = {label: float(f"{prediction[0][labels[label]]:.6f}") for label in label_order}
|
| 41 |
+
|
| 42 |
+
return result
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
|
| 46 |
+
label = gr.Label(num_top_classes=2)
|
| 47 |
+
|
| 48 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Smart Pet Classifier').launch(debug=False)
|
| 49 |
+
|
| 50 |
+
|