Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import numpy as np
|
|
9 |
|
10 |
# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5}
|
11 |
HEIGHT,WIDTH=224,224
|
12 |
-
|
13 |
model=load_model('Models/best_model1.h5')
|
14 |
|
15 |
# def classify_image(inp):
|
@@ -25,20 +25,31 @@ model=load_model('Models/best_model1.h5')
|
|
25 |
# result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
|
26 |
# return result
|
27 |
|
28 |
-
def classify_image(inp):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
|
43 |
|
44 |
image = gr.Image(height=HEIGHT,width=WIDTH,label='Input')
|
|
|
9 |
|
10 |
# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5}
|
11 |
HEIGHT,WIDTH=224,224
|
12 |
+
IMG_SIZE=224
|
13 |
model=load_model('Models/best_model1.h5')
|
14 |
|
15 |
# def classify_image(inp):
|
|
|
25 |
# result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
|
26 |
# return result
|
27 |
|
28 |
+
# def classify_image(inp):
|
29 |
+
# np.random.seed(143)
|
30 |
+
# labels = {'Cat': 0, 'Dog': 1}
|
31 |
+
# NUM_CLASSES = 2
|
32 |
+
# #inp = inp.reshape((-1, HEIGHT, WIDTH, 3))
|
33 |
+
# #inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
34 |
+
# prediction = model.predict(inp)
|
35 |
+
# predicted_class_indices = np.argmax(prediction, axis=1)
|
36 |
+
|
37 |
+
# label_order = ["Cat","Dog"]
|
38 |
|
39 |
+
# result = {label: float(f"{prediction[0][labels[label]]:.6f}") for label in label_order}
|
40 |
+
|
41 |
+
# return result
|
42 |
+
|
43 |
+
def classify_image(inp):
|
44 |
+
inp = inp.reshape((-1, IMG_SIZE, IMG_SIZE, 3))
|
45 |
+
inp = tf.keras.applications.vgg16.preprocess_input(inp)
|
46 |
+
prediction = model.predict(inp).flatten()
|
47 |
+
return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)}
|
48 |
|
49 |
+
# image = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
|
50 |
+
# label = gr.outputs.Label(num_top_classes=2)
|
51 |
|
52 |
+
# gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Cats Vs Dogs',height=600, width=1200,examples=ex,theme='peach').launch(debug=True)
|
53 |
|
54 |
|
55 |
image = gr.Image(height=HEIGHT,width=WIDTH,label='Input')
|