Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from tensorflow.keras.models import load_model | |
| import tensorflow_addons as tfa | |
| import os | |
| import numpy as np | |
| # labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5} | |
| HEIGHT,WIDTH=224,224 | |
| model=load_model('Models/best_model1.h5') | |
| # def classify_image(inp): | |
| # np.random.seed(143) | |
| # inp = inp.reshape((-1, HEIGHT,WIDTH, 3)) | |
| # inp = tf.keras.applications.nasnet.preprocess_input(inp) | |
| # prediction = model.predict(inp) | |
| # ###label = dict((v,k) for k,v in labels.items()) | |
| # predicted_class_indices=np.argmax(prediction,axis=1) | |
| # result = {} | |
| # for i in range(len(predicted_class_indices)): | |
| # if predicted_class_indices[i] < NUM_CLASSES: | |
| # result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i]) | |
| # return result | |
| def classify_image(inp): | |
| np.random.seed(143) | |
| labels = {'Cat': 0, 'Dog': 1} | |
| NUM_CLASSES = 2 | |
| #inp = inp.reshape((-1, HEIGHT, WIDTH, 3)) | |
| #inp = tf.keras.applications.nasnet.preprocess_input(inp) | |
| prediction = model.predict(inp) | |
| predicted_class_indices = np.argmax(prediction, axis=1) | |
| label_order = ["Cat","Dog"] | |
| result = {label: float(f"{prediction[0][labels[label]]:.6f}") for label in label_order} | |
| return result | |
| image = gr.Image(height=HEIGHT,width=WIDTH,label='Input') | |
| label = gr.Label(num_top_classes=2) | |
| gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Smart Pet Classifier').launch(debug=False) | |