File size: 1,950 Bytes
159fb0f
 
 
 
f7d5b45
e845a5d
c1c9c3a
 
742b795
cc9f68a
6040ac9
 
159fb0f
c1c9c3a
a1507f1
3039e58
 
 
 
 
 
 
 
 
 
 
 
 
 
c47223a
3039e58
06ee487
 
3039e58
 
 
 
 
47a795d
 
 
 
 
 
 
e015e39
3062159
 
47a795d
e015e39
47a795d
0cfd3a9
c1c9c3a
159fb0f
c1c9c3a
a1507f1
24c337c
c47223a
4bfddf6
159fb0f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow_addons as tfa
import os
import numpy as np


# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5}
HEIGHT,WIDTH=224,224
NUM_CLASSES=6

model=load_model('best_model.h5')

# def classify_image(inp):
#   np.random.seed(143)
#   inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
#   inp = tf.keras.applications.nasnet.preprocess_input(inp) 
#   prediction = model.predict(inp)
#   ###label = dict((v,k) for k,v in labels.items())
#   predicted_class_indices=np.argmax(prediction,axis=1)
#   result = {}
#   for i in range(len(predicted_class_indices)):
#       if predicted_class_indices[i] < NUM_CLASSES:
#           result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
#   return result 


def classify_image(inp):
    np.random.seed(143)
    labels = {'Burger King': 0, 'KFC': 1, 'McDonalds': 2, 'Other': 3, 'Starbucks': 4, 'Subway': 5}
    NUM_CLASSES = 6
    inp = inp.reshape((-1, HEIGHT, WIDTH, 3))
    inp = tf.keras.applications.nasnet.preprocess_input(inp)
    prediction = model.predict(inp)
    predicted_class_indices = np.argmax(prediction, axis=1)
    result = {}
    # for i in range(len(predicted_class_indices)):
    #     if predicted_class_indices[i] < NUM_CLASSES:
    #         try:
    #             label = labels[predicted_class_indices[i]]
    #             result[label] = float(predicted_class_indices[i])
    #         except KeyError:
    #             print(f"KeyError: Label not found for index {predicted_class_indices[i]}")
    result = [f"{label}: {prediction:.2f}" for label, prediction in labels.items()]
    return ", ".join(result)



 



    
image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
label = gr.Textbox()

gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Brand Logo Detection').launch(debug=False)