File size: 1,958 Bytes
159fb0f
 
 
 
f7d5b45
e845a5d
c1c9c3a
 
742b795
cc9f68a
6040ac9
 
159fb0f
c1c9c3a
a1507f1
3039e58
 
 
 
 
 
 
 
 
 
 
 
 
 
c47223a
3039e58
06ee487
 
3039e58
 
 
 
 
47a795d
 
 
 
 
 
 
3062159
 
 
47a795d
 
0cfd3a9
c1c9c3a
159fb0f
c1c9c3a
a1507f1
24c337c
c47223a
4bfddf6
159fb0f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow_addons as tfa
import os
import numpy as np


# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5}
HEIGHT,WIDTH=224,224
NUM_CLASSES=6

model=load_model('best_model.h5')

# def classify_image(inp):
#   np.random.seed(143)
#   inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
#   inp = tf.keras.applications.nasnet.preprocess_input(inp) 
#   prediction = model.predict(inp)
#   ###label = dict((v,k) for k,v in labels.items())
#   predicted_class_indices=np.argmax(prediction,axis=1)
#   result = {}
#   for i in range(len(predicted_class_indices)):
#       if predicted_class_indices[i] < NUM_CLASSES:
#           result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
#   return result 


def classify_image(inp):
    np.random.seed(143)
    labels = {'Burger King': 0, 'KFC': 1, 'McDonalds': 2, 'Other': 3, 'Starbucks': 4, 'Subway': 5}
    NUM_CLASSES = 6
    inp = inp.reshape((-1, HEIGHT, WIDTH, 3))
    inp = tf.keras.applications.nasnet.preprocess_input(inp)
    prediction = model.predict(inp)
    predicted_class_indices = np.argmax(prediction, axis=1)
    result = {}
    # for i in range(len(predicted_class_indices)):
    #     if predicted_class_indices[i] < NUM_CLASSES:
    #         try:
    #             label = labels[predicted_class_indices[i]]
    #             result[label] = float(predicted_class_indices[i])
    #         except KeyError:
    #             print(f"KeyError: Label not found for index {predicted_class_indices[i]}")
    result = [f"{label}: {prediction:.2f}" for label, prediction in zip(labels, prediction)]
    return ", ".join(result)


 



    
image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
label = gr.Textbox()

gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Brand Logo Detection').launch(debug=False)