Spaces:
Running
Running
File size: 3,964 Bytes
8af54b8 a6d7b1c 4c7982b be1543a 044ed98 8af54b8 be1543a 8af54b8 be1543a 8af54b8 be1543a 8af54b8 be1543a 8af54b8 be1543a 8af54b8 e01a5f6 18cd4ae a6d7b1c be1543a a6d7b1c be1543a 18cd4ae be1543a a6d7b1c be1543a a6d7b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# %%
try:
from ipytorch import logging
except Exception as e:
import logging
from typing import Any, Optional, Protocol, Iterable, Callable
from tqdm.auto import tqdm
from evaluate.evaluation_suite import EvaluationSuite
import evaluate
import numpy as np
import datasets
import pandas as pd
from .tasks import *
from .utils import is_equiv
# %%
# %cd ../tlem
# %load_ext ipytorch
# %ls
# TODO: Add BibTeX citation
_CITATION = """\
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
# @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ReasoningMetric(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# if self.config_name in ["cmmlu"]:
features = datasets.Features(
{
"responses": datasets.Value("string"),
# "responses": datasets.Sequence(datasets.Value("float")),
"references": datasets.Value("string"),
}
)
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.EvaluationModuleInfo(
# This is the description that will appear on the modules page.
# module_type="measurement",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=features,
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _compute(self, responses, references):
scores = getattr(Metrics, self.config_name)(responses, references)
results = {"Accuracy": np.nanmean(scores)}
logging.info(results)
return results
gsm8k = Task(
dataset_name=("gsm8k", "main"),
metric_name=("sustech/tlem", "gsm8k"),
input_column="question",
label_column="answer",
)
class Suite(EvaluationSuite):
def run(
self,
model_or_pipeline: Any,
name="tlem",
) -> dict[str, float]:
self.assert_suite_nonempty()
def run_tasks(tasks):
for task in tqdm(tasks):
if task.name not in self.cached_result:
self.cached_result[task.name] = task.run(model_or_pipeline)
results = [self.cached_result[task.name] for task in tasks]
return pd.DataFrame(results).mean().to_dict()
if isinstance(self.suite, dict):
for category, tasks in tqdm(self.suite.items()):
logging.warning(f"Combined results: {category}:{run_tasks(tasks)}")
else:
logging.warning(f"Combined results: {run_tasks(self.suite)}")
return self.cached_result
def add(self, name):
chat = False
match name:
case _ if "chat" in name:
chat = True
match name:
case _ if name.startswith("mmlu"):
suite = MMLU.suite(chat=chat)
case _ if name.startswith("cmmlu"):
suite = CMMLU.suite(chat=chat)
case "gsm8k":
suite = [gsm8k]
match name:
case _ if "test" in name:
suite = suite["Test"]
self.suite = suite
def __init__(self, name="tlem"):
super().__init__(name)
self.cached_result = {}
self.suite = [
# TASK_REGISTRY["gsm8k"],
# TASK_REGISTRY["competition_math"],
]
|