import streamlit as st
from PIL import Image
import os
import base64
import io
from dotenv import load_dotenv
from groq import Groq
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
# ======================
# CONFIGURATION SETTINGS
# ======================
st.set_page_config(
page_title="Smart Diet Analyzer",
page_icon="🍎",
layout="wide",
initial_sidebar_state="expanded"
)
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
# ======================
# UTILITY FUNCTIONS
# ======================
def initialize_api_client():
"""Initialize Groq API client"""
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
st.error("API key not found. Please verify .env configuration.")
st.stop()
return Groq(api_key=api_key)
def encode_image(image_path):
"""Encode an image to base64"""
try:
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
except FileNotFoundError:
return ""
def process_image(uploaded_file):
"""Convert image to base64 string"""
try:
image = Image.open(uploaded_file)
buffer = io.BytesIO()
image.save(buffer, format=image.format)
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format
except Exception as e:
st.error(f"Image processing error: {e}")
return None, None
def generate_pdf(report_text, logo_b64):
"""Generate a PDF report"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
# Include logo at the beginning of the report
logo_image = Image.open(io.BytesIO(base64.b64decode(logo_b64)))
logo_width, logo_height = logo_image.size
logo_aspect = logo_height / logo_width
max_logo_width = 150 # Adjust as needed
logo_width = min(logo_width, max_logo_width)
logo_height = int(logo_width * logo_aspect)
story = [
Paragraph(f'', styles['Title']),
Spacer(1, 12),
Paragraph("Nutrition Analysis Report", styles['Title']),
Spacer(1, 12),
Paragraph(report_text.replace('\n', '
'), styles['BodyText'])
]
doc.build(story)
buffer.seek(0)
return buffer
def generate_analysis(uploaded_file, client):
"""Generate AI-powered food analysis"""
base64_image, img_format = process_image(uploaded_file)
if not base64_image:
return None
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
try:
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": """
You are an expert nutritionist with advanced image analysis capabilities.
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content as accurately as possible.
**Instructions:**
- List each identified food item separately.
- Use known nutritional data to provide accurate calorie estimates.
- Consider portion size, cooking method, and density of food.
- Clearly specify if an item's calorie count is an estimate due to ambiguity.
- Provide the total estimated calorie count for the entire meal.
**Output Format:**
- Food Item 1: [Name] – Estimated Calories: [value] kcal
- Food Item 2: [Name] – Estimated Calories: [value] kcal
- ...
- **Total Estimated Calories:** [value] kcal
If the image is unclear or lacks enough details, state the limitations and provide a confidence percentage for the estimation.
"""},
{"type": "image_url", "image_url": {"url": image_url}}
]
}
],
temperature=0.2,
max_tokens=400,
top_p=0.5
)
return response.choices[0].message.content
except Exception as e:
st.error(f"API communication error: {e}")
return None
# ======================
# UI COMPONENTS
# ======================
def display_main_interface():
"""Render primary application interface"""
logo_b64 = encode_image("src/logo.png")
# HTML with inline styles to change text colors
st.markdown(f"""
AI-Powered Food & Nutrition Analysis